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Abstract—Mobile apps are notorious for collecting a wealth
of private information from users. Despite significant effort from
the research community in developing privacy leak detection tools
based on data flow tracking inside the app or through network
traffic analysis, it is still unclear whether apps and ad libraries
can hide the fact that they are leaking private information. In
fact, all existing analysis tools have limitations: data flow tracking
suffers from imprecisions that cause false positives, as well as false
negatives when the data flow from a source of private information
to a network sink is interrupted; on the other hand, network
traffic analysis cannot handle encryption or custom encoding.

We propose a new approach to privacy leak detection that
is not affected by such limitations, and it is also resilient to
obfuscation techniques, such as encoding, formatting, encryption,
or any other kind of transformation performed on private
information before it is leaked. Our work is based on black-
box differential analysis, and it works in two steps: first, it
establishes a baseline of the network behavior of an app; then,
it modifies sources of private information, such as the device
ID and location, and detects leaks by observing deviations in
the resulting network traffic. The basic concept of black-box
differential analysis is not novel, but, unfortunately, it is not
practical enough to precisely analyze modern mobile apps. In fact,
their network traffic contains many sources of non-determinism,
such as random identifiers, timestamps, and server-assigned
session identifiers, which, when not handled properly, cause too
much noise to correlate output changes with input changes.

The main contribution of this work is to make black-box dif-
ferential analysis practical when applied to modern Android apps.
In particular, we show that the network-based non-determinism
can often be explained and eliminated, and it is thus possible to
reliably use variations in the network traffic as a strong signal
to detect privacy leaks. We implemented this approach in a
tool, called AGRIGENTO, and we evaluated it on more than one
thousand Android apps. Our evaluation shows that our approach
works well in practice and outperforms current state-of-the-art
techniques. We conclude our study by discussing several case
studies that show how popular apps and ad libraries currently
exfiltrate data by using complex combinations of encoding and
encryption mechanisms that other approaches fail to detect. Our
results show that these apps and libraries seem to deliberately
hide their data leaks from current approaches and clearly
demonstrate the need for an obfuscation-resilient approach such
as ours.
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I. INTRODUCTION

One main concern of mobile app users is the leakage of
private information: Mobile apps, and third-party advertisement
(ad) libraries in particular, extensively collect private informa-
tion and track users in order to monetize apps and provide
targeted advertisements. In response, the security community
has proposed numerous approaches that detect whether a given
app leaks private information to the network or not. The majority
of approaches utilize data flow analysis of the app’s code, both
through static and/or dynamic taint analysis. Tools based on
static taint analysis, such as FlowDroid [6f], identify possible
sources of private information and determine how their values
flow throughout the app and, eventually, to sinks, such as the
network. Dynamic taint analysis tools, such as TaintDroid [13]],
execute apps in an instrumented environment and track how
private information is propagated while the app is running.
Finally, AppAudit combines both approaches, determining
critical flows that leak data through static analysis and verifying
them through an approximated dynamic analysis [46].

While these tools provide useful insights, they suffer from
several limitations that affect their adoption, especially when
the threat model considers apps that try to hide the fact that they
are leaking information. Adversaries can deliberately add code
constructs that break the flow of information throughout an app
and make data flow analysis approaches “lose track” of tainted
values. Related works [9]], [36] have already demonstrated how
an app can, for example, use indirections through implicit
control flows or through the file system to efficiently bypass
static and dynamic data flow analysis. Furthermore, static and
dynamic analysis approaches for mobile apps usually only
inspect data flow in Dalvik bytecode (i.e., the Java component of
the app) and miss data leaks in native code components, which
are becoming more and more prevalent [5], [26]. Both static and
dynamic analysis can also have false positives, mainly due to a
phenomenon called overtainting: imprecisions in modeling how
information flows through specific instructions, or imprecisions
introduced to make the analysis scalable might establish that a
given value is “tainted” with private information even when, in
fact, it is not.

Since static analysis does not perform real-time detection of
privacy leaks, and dynamic analysis requires heavy instrumen-
tation, and is thus more likely to be used by app stores than
by end users, researchers have recently proposed a more light-
weight alternative: identifying privacy leaks on the network layer
through traffic interception [24], [27], [34], [35], [39]. However,
obfuscation is out-of-scope for the majority of approaches as
they perform simple string matching and essentially “grep”
for hardcoded values of private information and some well-



known encodings such as Base64 or standard hashing algorithms.
ReCon [35]] is the most resilient to obfuscation as it identifies
leaks based on the structure of the HTTP requests, for example
by learning that the value following a “deviceid” key in a HTTP
GET request is probably a device ID. Still, the underlying
machine learning classifier is limited by the data it is trained
on, which is collected through TaintDroid and manual analysis—
if the labelling process misses any leak and its corresponding
key, e.g., due to obfuscation or custom encoding, ReCon will
not be able to detect it.

In general, the transformation of privacy leaks, from sim-
ple formatting and encoding to more complex obfuscations,
has gotten little attention so far. Only BayesDroid [42] and
MorphDroid [17] have observed that the leaked information
does not always exactly match the original private information,
but focused on leaks consisting of subsets or substrings of
information instead of obfuscation. It is unclear to what extent
apps can hide their information leaks from state-of-the-art tools.
For this purpose, we developed a novel automatic analysis
approach for privacy leak detection in HTTP(S) traffic that is
agnostic to how private information is formatted or encoded. Our
work builds on the idea of observing network traffic and attempts
to identify leaks through a technique similar to the differential
analysis approach used in cryptography: first, we collect an
app’s network traffic associated with multiple executions; then,
we modify the input, i.e., the private information, and look for
changes in the output, i.e., the network traffic. This allows us to
detect leaks of private information even if it has been heavily
obfuscated.

The idea to perform differential black-box analysis is
intuitive, and in fact, has already been explored by Privacy
Oracle [23]] for the detection of information leaks in Windows
applications. One of the main challenges of performing differen-
tial analysis is the elimination of all sources of non-determinism
between different executions of an app. Only by doing this
one can reliably attribute changes in the output to changes
in the input, and confirm the presence of information leaks.
While Privacy Oracle was mainly concerned with deterministic
executions to eliminate OS artifacts that vary between executions
and could interfere with the analysis, we observed that non-
deterministic network traffic poses a far greater challenge when
analyzing modern apps. Due to the frequent use of random
identifiers, timestamps, server-assigned session identifiers, or
encryption, the network output inherently differs in every
execution. These spurious differences make it impractical to
detect any significant differences caused by actual privacy leaks
by simply observing variations in the raw network output.

One key contribution of this work is to show that, in fact, it is
possible to explain the non-determinism of the network behavior
in most cases. To this end, we conducted a small-scale empirical
study to determine the common causes of non-determinism in
apps’ network behavior. Then, we leveraged this knowledge in
the development of a new analysis system, called AGRIGENTO,
which eliminates the root causes of non-determinism and makes
differential analysis of Android apps practical and accurate.

Our approach has the key advantage that it is “fail-safe”: we
adopt a conservative approach and flag any non-determinism that
AGRIGENTO cannot eliminate as a “potential leak.” For each
identified leak, AGRIGENTO performs a risk analysis to quantify
the amount of information it contains, i.e., its risk, effectively

limiting the channel capacity of what an attacker can leak
without raising an alarm. We performed a series of experiments
on 1,004 Android apps, including the most popular ones from
the Google Play Store. Our results show that our approach works
well in practice with most popular benign apps and outperforms
existing state-of-the-art tools. As a result, AGRIGENTO sheds
light on how current Android apps obfuscate private information
before it is leaked, with transformations going far beyond simple
formatting and encoding. In our evaluation, we identified several
apps that use custom obfuscation and encryption that state-of-
the-art tools cannot detect. For instance, we found that the
popular InMobi ad library leaks the Android ID using several
layers of encoding and encryption, including XORing it with a
randomly generated key.

It is not surprising that developers are adopting such stealth
techniques to hide their privacy leaks, given the fact that
regulators such as the Federal Trade Commission (FTC) have
recently started to issue sizable fines to developers for the
invasion of privacy of their users [14], [15]: aforementioned
InMobi for example is subject to a penalty of $4 million
and has to undergo bi-yearly privacy audits for the next 20
years for tracking users’ location without their knowledge and
consent [16]. Also, counterintuitively to the fact that they are
collecting private information, app developers are also seemingly
becoming more privacy-aware and encode data before leaking
it. Unfortunately, it has been shown that the structured nature of
some device identifiers makes simple techniques (e.g., hashing)
not enough to protect users’ privacy [12], [18]]. Consequently, on
one hand there is a clear motivation for developers to perform
obfuscation—either to maliciously hide data leaks, or to secure
user data by not transmitting private information in plaintext—
on the other hand privacy leak detection tools need to be
agnostic to any kind of obfuscation.

In summary, we make the following contributions:

e  We developed AGRIGENTO, a tool that performs root
cause analysis of non-determinism in the network
behavior of Android apps.

e We show that, in most cases, non-determinism in
network behavior can be explained and eliminated.
This key insight makes privacy leak detection through
differential black-box analysis practical.

e  The results of our empirical study provide new insights
into how modern apps use custom encoding and obfus-
cation techniques to stealthily leak private information
and to evade existing approaches.

In the spirit of open science, we make all the datasets and the
code developed for this work publicly available[]

II. MOTIVATION

This section discusses a real-world example that motivates
our work. Consider the snippet of code in Figure [} The code
first obtains the Android ID using the Java Reflection API,
hashes the Android ID with SHA1, XORs the hash with a
randomly generated key, stores the result in JSON format, and
encrypts the JSON using RSA. Finally, it sends the encrypted
JSON and the XOR key through an HTTP POST request.

! https://github.com/ucsb- seclab/agrigento


https://github.com/ucsb-seclab/agrigento

StringBuilder json = new StringBuilder();

Class class = Class.forName ("PlatformId")
String aid = class.getDeclaredMethod("getAndroidId",
Context.class) .invoke (context) ;

MessageDigest shal = getInstance ("SHA-1");
shal.update (aid.getBytes());

byte[] digest = shal.digest();

Random r = new Random() ;

int key = r.nextint();

byte[] xored = customXOR (digest, key);

String encoded = Base64.encode (xored);

json.append ("O1l:\"");
json.append (encoded) ;
json.append ("\’");

Cipher rsa = getInstance ("RSA/ECB/nopadding");
rsa.init (ENCRYPT_MODE, (Key) publicKey);
encr = new String(rsa.doFinal (json.getBytes()));

HttpURLConnection conn = url.openConnection();
OutputStream os = conn.getOutputStream();
os.write (Baseb6b4.encode (encr) .getBytes());
os.write(("key=" + key).getBytes());

Fig. 1.  Snippet of code leaking the Android ID using obfuscation and
encryption. The example is based on real code implemented in the popular
InMobi ad library.

Depending on how this functionality is implemented, ex-
isting tools would miss the detection of this leak. Existing
approaches based on static analysis would miss this privacy
leak if the functionality is implemented in native code [35], dy-
namically loaded code [31]], or in JavaScript in a WebView [28].
Furthermore, the use of the Java Reflection API to resolve calls
at runtime can severely impede static analysis tools.

More fundamentally, the complex lifecycle and component-
based nature of Android apps make tracking private information
throughout an app extremely challenging, and both static and
dynamic approaches are sensitive to the disruption of the data
flow. For instance, many existing tools would miss this leak
if this functionality is implemented in different components.
Similarly, if the app first writes the private information to a file,
e.g., its settings, and only later reads it from there to transmit
it via a network sink, any data flow dependency would be lost.
Furthermore, data flow is also lost when the implementation is
incomplete and fails to propagate data flows through relevant
functions: TaintDroid for example does not track data flows
through hashing functions [32].

Existing black-box approaches that analyze the network
traffic would miss the detection of this leak as well, as they only
consider basic encodings, such as Base64 or standard hashing
algorithms, and cannot handle complex obfuscations techniques
that combine multiple different encodings and algorithms such
as the example code in Figure

Our work attempts to fill this gap: we focus on designing
and developing an approach able to detect privacy leaks even
when custom obfuscation mechanisms are used. Our approach
is black-box based, so it is not affected by code obfuscation
or complex program constructs. Furthermore, our approach can
handle obfuscations of the actual data since it does not look for
specific tokens that are known to be associated with leaks, but

rather treats every inexplicable change in the network traffic as
a potential leak.

We stress that the example we discussed in this section
is not synthetic, but it is actually the simplified version of a
snippet taken from one of the most popular apps in the Google
Play Store. Specifically, this example is the simplified version
of a functionality implemented in the popular InMobi ad library.
We also note that this case of nested encodings and encryption
is not just an isolated example: our experiments, discussed at
length in show that these obfuscated leaks occur quite
frequently and that existing black-box approaches are unable to
detect them.

III. SOURCES OF NON-DETERMINISM

One of the key prerequisites for performing differential
analysis is to eliminate any sources of non-determinism between
different executions. Only by doing so, one can reliably attribute
any changes in the network output following changes in private
input values to information leakage. While previous work has
focused on deterministic executions through the use of OS
snapshots [23], according to our experiments the network itself
is by far the largest source of non-determinism.

When executing an app multiple times on exactly the same
device, with the same settings, and using the same user input,
one would intuitively expect an app to produce exactly the
same (i.e., deterministic) network traffic during every execution.
However, our preliminary experiments showed that this is not the
case: the network traffic and more specifically the transmitted
and received data frequently changes on every execution, and
even between the same requests and responses during a single
execution.

This non-determinism is not necessarily something that
is introduced by the app developer intentionally to evade
analysis systems, but, instead, it is most often part of the
legitimate functionality and standard network communication.
We conducted a small-scale study on 15 Android apps randomly
selected from the Google Play Store, and we investigated the
most common sources of non-determinism in network traffic.
We were able to identify the following categories:

e Random values. Random numbers used to generate
session identifiers or, for instance, to implement game
logic. Also, the Android framework provides developers
with an API to generate 128-bit random universally
unique identifiers (UUID). In the most common sce-
nario, apps use this API to generate an UUID during
the installation process.

e Timing values. Timestamps and durations, mainly
used for dates, logging, signatures, and to perform
measurements (e.g., loading time).

e System values. Information about the state and the
performance of system (e.g., information about free
memory and available storage space).

e Encrypted values. Cryptographic algorithms use ran-
domness to generate initialization vectors (IV) and
padding.



e Network values. Information that is assigned by a
network resource (e.g., cookies, server-assigned session
identifiers).

e  Non-deterministic execution. Randomness inherent
to the execution of an app, such as different loading
times affecting the UI exploration.

IV. APPROACH

For any given app, our analysis consists of two main phases.
In the first phase (see §IV-A), called network behavior summary
extraction, we execute the app multiple times in an instrumented
environment to collect raw network traces, and contextual
information, which allows us to attribute the non-determinism
that we see in the network behavior to the sources discussed in
gl We then combine these network traces with the contextual
information to create a contextualized trace for each run. Finally,
we merge the contextualized network traces of all runs into a
network behavior summary of the app.

In the second phase of our approach (see §IV-B)), we run
the app again in exactly the same instrumented environment,
with the only difference that we change one of the input
sources of private information (e.g., IMEI location). We then
compare the contextualized trace collected in this final run
with the network behavior summary of the previous runs to
identify any discrepancy. We perform this comparison in two
steps: differential analysis, which identifies differences, and risk
analysis, which scores the identified differences to determine
potential privacy leaks.

Figure 2] shows a high-level overview of our approach, while
Figure [3] illustrates the individual steps in more detail using a
simplified example.

A. Network Behavior Summary Extraction

Network Trace & Contextual Information. For each execu-
tion of the app in our instrumented environment, we collect a
network trace, which contains the raw HTTP flows generated
by the app, and contextual information, which contains the
values generated by any of the sources of non-determinism
we described earlier. Our approach here goes beyond simple
network traffic analysis, and includes instrumenting the way
the app is interacting with the Android framework. Specifically,
AGRIGENTO is able to eliminate the different sources of non-
determinism by intercepting calls from the app to certain
Android API calls and recording their return values, and in
some cases replacing them—either by replaying previously
seen values or by returning constant values. First, AGRIGENTO
records the timestamps generated during the first run of each
app, and replays the same values in the further runs. Second,
it records the random identifiers (UUID) generated by the app.
Third, it records the plaintext and ciphertext values whenever the
app performs encryption. Finally, the instrumented environment
sets a fixed seed for all random number generation functions,
and replaces the values of system-related performance measures
(e.g., free memory, available storage space) with a set of
constants.

Note that when an app uses its own custom encryption
routines, or generates random identifiers itself without relying
on Android APIs, AGRIGENTO will not be able to detect these
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Fig. 2. High-level overview of AGRIGENTO: during the network behavior
summary extraction it first generates a baseline of an app’s network behavior
during n runs, taking into account non-determinism in the contextual infor-
mation; during the differential analysis it then modifies the sources of private
information and identifies privacy leaks based on differences in the network
behavior of the final run compared to the network behavior observed in the
previous runs.
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as sources of non-determinism. However, as we explain in the
next paragraph, our approach is conservative, which means this
would produce a false positive, but not a false negative.

Contextualized Trace. We build the contextualized trace
by incorporating the contextualized information into the raw
network trace. To do this, we remove all sources of non-
determinism (i.e., values stored in the contextual information)
we encountered during the execution, by labeling all timestamps-
related values, random identifiers, and values coming from the
network, and decrypting encrypted content by mapping the
recorded ciphertext values back to their plaintext. Essentially,
we look at the raw network trace and try to determine, based
on string comparison, values in the HTTP traffic that come
from potential sources of non-determinism. This is similar to
the techniques that previous works use to find certain values of
private information in the network traffic. The key difference is
that we do not perform the string matching to find leaks, but,
rather, to explain sources of non-determinism. This is essentially
the opposite goal of previous work: rather than finding leaks,
we use string matching techniques to flag potential leaks as
“safe.” This approach has the advantage of being conservative.
In fact, we flag any source of non-determinism that we cannot
explain. While in previous work a failure of the string matching
would lead to a missed leak (i.e., a false negative), our approach
would produce, in the worst case, a false positive.

Network Behavior Summary. When AGRIGENTO builds the
contextualized network traces, it essentially removes all common
sources of non-determinism from the network traffic. However,
it cannot fully eliminate non-determinism in the execution path
of the app. Even though AGRIGENTO runs the app in an instru-
mented environment and replays the same sequence of events
for each run, different loading times of the UI and other factors
can result in different execution paths. To mitigate this issue,
we run each app multiple times and merge the contextualized
traces collected in the individual runs to a network behavior
summary. Intuitively, the network behavior summary includes
all the slightly different execution paths, generating a more
complete picture of the app’s network behavior. In other words,
the network behavior summary represents “everything we have
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Example of how AGRIGENTO performs its analysis in two phases. (1) In the first phase it builds a network behavior summary and replaces common

sources of non-determinism. (2) In the second phase performs differential analysis by changing the value of an input source of private information to identify
differences in the network behavior, which it then scores as potential privacy leaks.

seen” during the executions of the given app and aims at
providing a trusted baseline behavior of the app.

A distinctive aspect of AGRIGENTO is how it determines
the number of times each app should be executed. Intuitively,
the number of runs affects the performance of our tool in terms
of false positives. However, we observed that this parameter
strongly depends on the complexity of the app. Therefore, our
approach is iterative and decides after each run if another one is
required. After each run AGRIGENTO performs the differential
analysis using the collected contextualized traces. By analyzing
the discrepancies in the network behavior without having altered
any source of private information, we can understand when
AGRIGENTO has sufficiently explored the app’s behavior, i.e.,
when the network behavior summary reaches convergence. In
practice, we say that an app reaches convergence when we do
not see any discrepancies in the network behavior summary for
K consecutive runs. In we show how this parameter sets
a trade-off between the ability of explaining non-determinism
and the overall time it takes AGRIGENTO to analyze an app
(i.e., the average number of runs). Also, because some apps
might never reach convergence, we set a maximum number of
runs.

B. Differential Analysis

In a second phase, we run the app in the same environment
as before, but modify the value of private information sources,
such as the IMEI and location, we want to track. We can do
this (a) once for all values to detect if an app is stealthily
leaking information in general, or (b) multiple times—once
for every unique identifier—to precisely identify the exact
type of information the app is leaking. In the example in
Figure [3] AGRIGENTO changed the value of a source of private
information from c734f4ec to 03ff6led.

Differential Analysis. As in the previous phase, we collect
a network trace and contextual information to build a con-
textualized trace. Then, we compare this contextualized trace

against the network behavior summary, which we extracted
in the previous phase. To extract the differences, we leverage
the Needleman-Wunsch algorithm [29] to perform a pairwise
string sequence alignment. The algorithm is based on dynamic
programming and can achieve an optimal global matching. It
is well-suited for our scenario: in fact, it has been successfully
applied to automatic network protocol reverse engineering
efforts [[7], [45]], [SO], which conceptually have a similar goal
than our network behavior summary, in that they extract a
protocol from observing the network behavior during multiple
executions.

At this point of our analysis, we eliminate the final source of
non-determinism: values that come from the network. For each
difference, AGRIGENTO checks if its value has been received
in a response to a previous network request (e.g., the value is a
server-assigned identifier). We assume that leaked information is
not part of the payload of previous responses. This is reasonable
since, in our threat model, the attacker does not know the value
of the leaked source of private information in advance.

After this filtering step, AGRIGENTO raises an alert for
each remaining difference between the contextualized trace in
the final run and the network behavior summary. This is a
conservative approach, which means that, if there is some source
of non-determinism AGRIGENTO does not properly handle
(e.g., apps that create UUIDs themselves or perform custom
encryption without leveraging the Android framework), it will
flag the app: In the worst case, this will produce a false positive.

Risk Analysis. In the last phase of our approach, AGRIGENTO
quantifies the amount of information in each identified differ-
ence to evaluate the risk that an alert is caused by an actual
information leak. Our key intuition is that not all identified
differences bear the same risk. Thus, we assign a score to
each alert based on how much the information differs from
the network behavior summary. Specifically, we leverage two
distance metrics, the Hamming distance and the Levenshtein
distance, to compare each alert value to the corresponding value
in the network behavior summary. Finally, for each app we



compute a cumulative score S as the sum of the scores of all
the alerts that AGRIGENTO produced for the app. This score
provides a measure of the amount of information (i.e., the
number of bits) an app can potentially leak, and it can thus be
used as an indirect measure of the overall risk of a privacy leak
in a given app.

V. SYSTEM DETAILS

We implemented AGRIGENTO in two main components: an
on-device component, which instruments the environment and
collects contextual information, and the core off-device compo-
nent, which intercepts the network traffic, extracts the network
behavior summary, and performs the differential analysis.

A. Apps Environment Instrumentation

We implemented a module, based on Xposed [4f], which
hooks method calls and records and modifies their return
values. As a performance optimization, AGRIGENTO applies
the contextualization steps only when needed (i.e., only when
it needs to address values from a non-deterministic source).

Random values. To record Android random identifiers
(UUIDs) the module intercepts the return of the Android
APl randomUUID () and reads the return value. However,
recording the randomly generated values is not enough: apps
frequently process these numbers (e.g., multiply them with a
constant), and thus they usually do not appear directly in the
network traffic. To handle this scenario, we set a fixed seed
for random number generation functions. By doing so, we can
observe the same values in the output network traffic for each
run, even without knowing how they are transformed by an
app. However, always returning the same number is also not
an option since this might break app functionality. Thus, we
rely on a precomputed list of randomly generated numbers.
For each run, the module modifies the return value of such
functions using the numbers from this precomputed list. In
case the invoked function imposes constraints on the generated
number (e.g., integers in the interval between 2 and 10), we
adapt the precomputed numbers in a deterministic way (e.g.,
by adding a constant), to satisfy the specific requirements of a
function call.

Timing values. Also in the case of timing information, only
recording the values is not enough since timestamps are often
used to produce more complex values (e.g., for the generation of
signatures). To deal with timestamp-related values, the module
hooks all the methods providing time-related information, such
as System.currentTimeMillis (), stores the return
values in a file during the first run, and modifies the return
values reading from the file in the next runs. It reads the stored
timestamps in the same order as they were written and, in case
one of the next runs performs more calls to a specific method
than the first run (this could be due to a different execution
path), it leaves the original return values unmodified for the
exceeding calls.

System values. We set to constants the return val-
ues of Android APIs that apps use to perform perfor-
mance measurements and fingerprint the device for example
by reading information about the available storage space

0x4432cd80 = Cipher.getinstance(0x48a67fe0)
*0x48a67fe0: "AES/CBC/PKCS5Padding"

0x4432cd80.init(1, 0x48a9fac0, 0x48d448ec)

0x48ae98f0 = 0x4432cd80.update(0x485affb74)
*0x485affb74: "Plaintext"

0x48ae98f0: \xea\x37\xfb\xfa\xc0\xcc\x47\x46\xce\x01
\x25\x0a\x82\x5b\x6b\x38

0x48aeb6f0 = 0x4432cd80.doFinal(0x485af740)
*0x485af740: "Content”
*0x48aeb6f0: \xf5\xffix0a\xab\xfO\x5b\xd9\xd5\x6a\x0f
\x6¢c\xda\x30\xaf\xf1\x3a

Decryption map

\xea\x37\xfb\xfa\xcO\xcc\x47\x46
i[\xce\lx01\x25\x0a\x82\x5b\x6b\x38
X5 \xfix0a\xab\xfO\x5b\xd9\xd5
[ \x6a\x0f\xBe\xda\x30\xafixf1\x3a

\J

Fig. 4. Example of how AGRIGENTO leverages Crypto API traces to build an
entry of the decryption map that maps ciphertext to its corresponding plaintext
(*address represents the content stored at that address).

from StatFs.getAvailableBlocks (), or by querying
ActivityManager.getMemoryInfo () for information
about available memory.

Encrypted values. In order to decrypt encrypted con-
tent, we hook the Android Crypto APIs (i.e., Cipher,
MessageDigest, Mac) and store the arguments and return
value of each method. Our module parses the API traces to
build a decryption map that allows it to map ciphertext to the
corresponding original plaintext. Since the final ciphertext can
be the result of many Crypto API calls, AGRIGENTO combines
the values tracking the temporal data dependency. Figure [4]
shows an example of how we use Crypto API traces to create
a map between encrypted and decrypted content. Specifically,
the example shows how AGRIGENTO creates an entry in the
decryption map by tracing the API calls to a Cipher object
and by concatenating the arguments of such calls ( update (),
doFinal ()).

Patching JavaScript code. We observed many applications
and ad libraries downloading and executing JavaScript (JS)
code. Often, this code uses random number generation, time-
related, and performance-related functions. We implemented a
module in the proxy that inspects the JS code and patches it
to remove non-determinism. Specifically, this module injects
a custom random number generation function that uses a
fixed seed, and replaces calls to Math.random() and
getRandomValues () with our custom generator. Also,
the JS injector replaces calls to time-related functions (e.g.,
Date.now ()) with calls to a custom, injected timestamp
generator, and sets constant values in global performance
structures such as timing.domLoading.

B. Network Setup

Our implementation of AGRIGENTO captures the HTTP
traffic and inspects GET and POST requests using a proxy based
on the mitmproxy library [2]. In order to intercept HTTPS
traffic, we installed a CA certificate on the instrumented device.
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Fig. 5. Example of the tree-based data structure used to model a network
behavior summary.

Furthermore, to be able to capture traffic also in the case apps
use certificate pinning, we installed Just TrustMe [1] on the
client device, which is an Xposed module that disables certifi-
cate checking by patching the Android APIs used to perform
the check (e.g., getTrustManagers ()). However, if an
app performs the certificate check using custom functionality
or native code, we cannot intercept the traffic.

We limit our study to HTTP(S) traffic (further referred to
both as HTTP), since related work found this to be the protocol
of choice for the majority (77.77%) of Android apps [11[]. How-
ever, this is only a limitation of our prototype implementation of
AGRIGENTO, and not a fundamental limitation of our approach.

Finally, to filter only the network traffic generated by the
analyzed app, we use iptables to mark packets generated
by the UID of the app, and route only those packets to our

proxy.

C. Network Behavior Summary

We model the network behavior summary using a tree-based
data structure, which contains the HTTP GET and POST flows
from all the contextualized traces. The tree has four layers. The
first layer contains all the domain names of the HTTP flows.
The second layer contains the paths of the HTTP flows recorded
for each domain. The third and fourth layers contain key-value
pairs from the HTTP queries and HTTP headers. Also, we
parse known data structures (e.g., JSON) according to the HTTP
Content-Type (e.g., application/json). Figure [5] shows
an example of a tree modeling a network behavior summary.

This structure is useful to group the fields of the HTTP
flows that we track according to their “type” and position in
the tree. In fact, when performing the differential analysis, we
want to compare fields in the same position in the tree. For
instance, if an HTTP request contains an HTTP value that is
not part of the tree, we compare it with the other values from
requests with the same domain, path, and key.

AGRIGENTO looks for privacy leaks at all levels of the
tree, i.e., in all parts of the HTTP request: the domain,
path, key, and values, as well as the headers and the pay-
load. In the current implementation AGRIGENTO includes
parsers for application/x-www—form-urlencoded,
application/json, and any content that matches a HTTP
query format (i.e., variable=value). However, AGRIGENTO can
be easily extended with parsers for further content types.

Algorithm 1 Differential Analysis.

1: procedure DIFFERENTIALANALYSIS(context_trace, summary)
2 diffs + O

3 for http_flow € context_trace do

4 if hittp_flow ¢ summary then

5: field « getMissingField(http_flow, summary)
6: fields < getSamePositionField( field, summary)
7 diffs.add(COMPARE(field, fields))

8 return diffs

9:

10: procedure COMPARE(field, fields)

11: diffs «+ @

12: most_similar <— mostSimilar( field, fields)

13: if isKnownDataStructure(field, most_similar) then

14: subfields < parseDataStructure(field)

15: similar_subfields < parseDataStructure(most_similar)
16: for i € subfields do

17: diffs.add(COMPARE(subfields;, similar_subfields;))
18: return diffs

19: if isKnownEncoding(field, most_similar) then

20: field < decode( field)

21: most_similar < decode(most_similar)

22: alignment <« align(field, most_similar)

23: regex +— getRegex(alignment)

24: diffs ¢+ getRegexMatches(field)

25: diffs < removeNetworkValues(diffs)

26: diffs <« whitelistBenignLibaries(diffs)
27: return diffs

D. Modifying Sources of Private Information

In our implementation we track the following sources
of private information: Android ID, contacts, ICCID, IMEI,
IMSI, location, MAC address, and phone number. For IC-
CID, IMEIL, IMSI, MAC address and phone number we
leverage the Xposed module to alter the return values of
the Android APIs that allow to retrieve such data (e.g.,
TelephonyManager.getDeviceId()). For the An-
droid ID we directly modify the value in the database in which
it is stored, while to alter the contact list we generate intents
through adb. We also use mock locations, which allow to set
a fake position of the device for debug purposes.

E. Differential Analysis

In the second phase of our approach, AGRIGENTO modifies
the input sources of private information as described in the
previous section, reruns the app in the instrumented environment,
and compares the new contextualized trace with the network
behavior summary to identify changes in the network traffic
caused by the input manipulation.

We implemented the differential analysis following the steps
defined in Algorithm |1} For each HTTP flow in the contextual-
ized trace collected from the final run, AGRIGENTO navigates
the tree and checks if each field of the given flow is part of the
tree. If it does not find an exact match, AGRIGENTO compares
the new field with the fields in the same position in the tree
(e.g., requests to the same domain, path, and key). Specifically,
AGRIGENTO performs the comparison between the new field
and the most similar field among those in the same position in
the tree. During the comparison phase, AGRIGENTO recognizes
patterns of known data structures such as JSON. If any are
found, AGRIGENTO parses them and performs the comparison
on each subfield. This step is useful to improve the alignment
quality and it also improves the performance since aligning



shorter subfields is faster than aligning long values. Furthermore,
before the comparison, AGRIGENTO decodes known encodings
(i.e., Base64, URLencode). Then, AGRIGENTO leverages the
Needleman-Wunsch algorithm to obtain an alignment of the
fields under comparison. The alignment identifies regions of
similarity between the two fields and inserts gaps so that
identical characters are placed in the same positions. From
the alignment, AGRIGENTO generates a regular expression.
Essentially, it merges consecutive gaps, and replaces them with
a wildcard (i.e., *). Finally, it obtains a set of differences
by extracting the substrings that match the wildcards of the
regular expression from a field. AGRIGENTO then discards
any differences caused by values that have been received
by previous network requests (e.g., server-assigned identifier).
Finally, AGRIGENTO also whitelists benign differences caused
by known Google libraries (e.g., googleads), which can
be particularly complex to analyze and that contain non-
determinism AGRIGENTO cannot efficiently eliminate.

Example. For instance, in this simplified case, the network
behavior summary tree contains the following HTTP flows:

domain.com/path?key=111111111_4716ac99767e
domain.com/path?key=111111111_6£fa092d4891a
other.com/new?1d=28361816686630788

The HTTP flow in the contextualized trace collected from the
final run is:

domain.com/path?key=999999999_4716ac99767e

AGRIGENTO navigates the tree from domain.com to key,
and then determines that 999999999_4716ac99767e is
not part of the tree. Hence, it selects the most similar field
in the tree, and performs the comparison with its value.
In this case, it aligns 999999999_4716ac99767e with
111111111_4716ac99767e. Starting from the alignments
it produces the regular expression x_4716ac99767e and
determines 999999999 as the difference in the network
behavior of the final run compared to the network behavior
summary of previous runs.

F. Risk Analysis

As mentioned in we combine the Hamming and
the Levenshtein distance to compute a score for each of the
differences AGRIGENTO identifies during differential analysis.
In particular, we are interested in quantifying the number of
bits that differ in the network traffic of the final run from what
we have observed in the network behavior summary.

For each field that the differential analysis flagged as being
different from the previously observed network traffic, we
compute a score based on the distance of its value to the most
similar value in the same position of the network behavior
summary. This is equivalent to selecting the minimum distance
between the value and all other previously observed values for
a specific field.

Given an app A, D (= the differences detected by analyzing
A), and F' (= all the fields in the tree of A’s network behavior),
we then compute an overall score S4 that quantifies how many

bits the app is leaking:

Hamming(z,y) if len(z) = len(y)

distance(x,y) =
(@,y) {Levensht@in(z,y) x 8 otherwise

Sa = Z Join, distance(d, f)
vdeD

We combine the Hamming and the Levenshtein distance as
follows: if the values under comparison are of equal length we
use the Hamming distance, otherwise we use the Levenshtein
distance. While we apply the Hamming distance at the bit level,
the Levenshtein distance calculates the minimum number of
single-character edits. In the latter case, to obtain the number
of different bits, we simply map one character to bits by
multiplying it with 8. We note that this distance metric does
not provide a precise measurement, but we believe it provides
a useful estimation of the amount of information contained in
each difference. Moreover, we note that BayesDroid [42] also
applied the Hamming and Levenshtein distances, although only
on strings of the same length, to provide a rough indication
on how much information is contained in a given leak. Both
metrics share the very same intuition and, therefore, provide a
similar numeric result.

VI. EVALUATION

For our evaluation, we first performed an experiment to
characterize non-determinism in network traffic and demonstrate
the importance of leveraging contextual information when
applying differential analysis to the network traffic of mobile
apps. Second, we compared the results of our technique with
existing tools showing that AGRIGENTO outperformed all of
them, and identified leaks in several apps that no other tool was
able to detect. Then, we describe the results of our analysis on
current popular apps and present some interesting case studies
describing the stealthy mechanisms apps use to leak private
information. Finally, we assess the performance of AGRIGENTO
in terms of runtime.

A. Experiment Setup

We performed our experiments on six Nexus 5 phones,
running Android 4.4.4, while we deployed AGRIGENTO on a 24
GB RAM, 8-core machine, running Ubuntu 16.04. The devices
and the machine running AGRIGENTO were connected to the
same subnet, allowing AGRIGENTO to capture the generated
network traffic.

We chose to perform our experiments on real devices
since emulators can be easily fingerprinted by apps and ad
libraries [30]], [43]. Especially ad libraries are likely to per-
form emulator detection as ad networks, such as Google’s
AdMob [21]], encourage the use of test ads for automated testing
to avoid inflating ad impressions. By using real devices instead
of emulators our evaluation is thus more realistic. Furthermore,
we set up a Google account on each phone to allow apps to
access the Google Play Store and other Google services.

For each execution, we run an app for 10 minutes using
Monkey [J3] for UI stimulation. We provide Monkey with a fixed
seed so that its interactions are the same across runs. Although
the fixed seed is not enough to remove all randomness from
the UI interactions, it helps to eliminate most of it. At the end
of each run, we uninstall the app and delete all of its data.



B. Datasets

We crawled the 100 most popular free apps across all
the categories from the Google Play Store in June 2016.
Additionally, we randomly selected and downloaded 100 less
popular apps. We distinguish between those two datasets based
on the intuition that these two sets of apps might differ
significantly in their characteristics and overall complexity.

In order to compare our approach with existing techniques,
we also obtained the dataset from the authors of ReCon [35],
which they used to compare their approach to state-of-the-art
static and dynamic data flow techniques. This dataset contains
the 100 most popular free apps from the Google Play Store
in August 2015 and the 1,000 most popular apps from the
alternative Android market AppsApk.com. Ultimately, we use
750 of those apps for analysis, since those apps were the ones
that produced any network traffic in ReCon’s experiments. We
further obtained the dataset of BayesDroid [42], which contains
54 of the most popular apps from the Google Play Store in
2013.

C. Characterizing Non-Determinism in Network Traffic

One key aspect of our work is being able to characterize and
explain non-determinism in network traffic. In fact, we want to
distinguish what changes “no matter what” and what changes
“exactly because we modified the input.” First, we show that
trivially applying approaches based on differential analysis is
ineffective when applied to modern Android apps. Second, our
technique allows us to pinpoint which apps are problematic, i.e.,
for which apps we cannot determine why the network output
changes. In this case, we cannot reliably correlate the differences
in output with the differences in input and, therefore, we flag
them as potentially leaking private information. We note that we
can adopt this conservative aggressive policy only because we
rarely encounter inexplicable differences in the network traffic
of apps that do not leak private information. In other words,
changes in network traffic that cannot be explained by our
system are strong indicators that private information is leaked.

To demonstrate how poorly a naive differential analysis ap-
proach without considering any network-based non-determinism
would perform, we analyzed the 100 popular Google Play apps
from the ReCon dataset twice: the first time, we trivially applied
the differential analysis without leveraging any contextual
information; the second time, instead, we applied our full
approach, executing the apps in our instrumented environment
and exploiting the collected contextual information. In both
cases, we measured the number of runs needed to converge,
setting 20 as the maximum number of runs.

Figure [6] shows the cumulative distribution functions of
the number of runs required to reach convergence in the two
scenarios. While in the first case almost all the apps did not
reach convergence (within a maximum number of 20 runs), our
approach correctly handled most of the cases. This demonstrates
two things: (1) network traffic is very often non-deterministic,
(2) in most cases, the contextual information recorded during
the app’s analysis is enough to determine the real source of
non-determinism.

In order to further confirm this finding, we evaluated how
the number of runs per app affects the number of apps for which
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Fig. 6. Cumulative distribution function (CDF) of the number of runs required
for convergence (for K = 3) applying AGRIGENTO’s full approach (solid line),
and the trivial differential analysis approach (dashed line) that does not consider
any non-determinism in the network behavior.
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Fig. 7. Percentage of apps with non-deterministic network traffic in an

increasing number of runs when applying AGRIGENTO’s full approach (solid
line), and the trivial differential analysis approach without leveraging contextual
information (dashed line).

AGRIGENTO cannot completely explain some source of non-
determinism. To do so, we performed a final execution without
altering any source of private information, and measured the
number of apps that contained non-determinism in the network
traffic (i.e., the number of apps for which AGRIGENTO raised
an alert). Figure [/| shows that, in contrast to our full approach,
when applying the differential analysis trivially, increasing the
number of runs is not enough to reduce non-determinism (82.1%
of the apps generated non-deterministic network traffic).

Finally, we evaluated how the choice of K (i.e., the number
of consecutive runs without discrepancies considered to reach
convergence) affects AGRIGENTO’s ability to explain non-
determinism. We performed the evaluation on two datasets:
the 100 most popular apps from the Google Play Store and
100 randomly selected less popular apps from the Google
Play Store. We run the analysis without altering any source
of private information. By doing this, any alert is caused by
the fact that there is some non-determinism in the network
traffic that AGRIGENTO could not explain. Table [I| shows that
K = 3 minimizes the number of apps with unexplained non-
determinism in their network traffic, at the cost of a small
increase in the average number of runs required per app. This
evaluation also shows that the popular apps indeed seem to



TABLE L CHOICE OF K (= NUMBER OF CONSECUTIVE RUNS TO REACH
CONVERGENCE) AND ITS EFFECT ON THE AVERAGE NUMBER OF RUNS PER
APP, AND NUMBER OF APPS WITH NON-DETERMINISM IN THE NETWORK
TRAFFIC THAT AGRIGENTO CANNOT EXPLAIN.

TABLE II. COMPARISON OF AGRIGENTO WITH EXISTING TOOLS ON THE

RECON DATASET (750 APPS)

Tool (Approach) #Apps detected

K Popular Non-Popular All
#apps avg #runs #apps avg #runs #apps avg #runs
1 39 6.02 16 3.10 55 4.56
2 30 8.28 14 4.44 44 6.36
3 28 9.85 11 5.67 39 7.76
4 28 12.42 11 6.78 39 9.60
5 28 13.82 11 8.01 39 10.92

be more complex than the randomly selected ones, for which
AGRIGENTO required a lower number of runs on average and
could fully explain all sources of non-determinism in more
cases overall.

D. Comparison with Existing Tools

To evaluate our approach and establish the presence of false
positives and false negatives, we compared AGRIGENTO to
existing state-of-the-art analysis tools. Generally, comparing the
results of this kind of systems is far from trivial, the main
problem being the absence of ground truth. Also, especially
in the case of obfuscated leaks, the detected information leaks
are often hard to verify by looking at the network traffic alone.
Therefore, we manually reverse engineered the apps to the best
of our ability to confirm our results. Finally, dynamic analysis
results are influenced by limited coverage and different UL
exploration techniques, which impedes the comparison.

The only currently available benchmark for privacy leak
detection is the DroidBenclﬂ test suite, which is commonly
used to evaluate approaches based on both static and dynamic
analysis. We found, however, that it contains very few test
cases for dynamic analysis, and those focus mainly on emulator
detection (not affecting us since we run our evaluation on real
devices). It also does not address complex obfuscation scenarios
such as the ones we observed in this work, and, thus, none of
the test cases are appropriate for the evaluation of AGRIGENTO.

We thus performed the comparison against existing tools
using two datasets on which related work was evaluated: 750
apps from ReCon, and 54 apps from BayesDroid.

ReCon dataset. A similar comparison to evaluate state-of-the-
art analysis tools from different categories (static taint analysis,
dynamic taint analysis, and a combination of both) has been
performed recently to evaluate ReCon [35], which itself is
based on network flow analysis. Table [II| shows the comparison
between our tool and AppAudit [46], Andrubis [26] (which
internally uses TaintDroid [13])), FlowDroid [6], and ReCon. We
base our comparison on the number of apps flagged by each
tool for leaking information. For the comparison we considered
the following sources of private information: Android ID, IMEI,
MAC address, IMSI, ICCID, location, phone number, and
contacts.

Compared to ReCon, AGRIGENTO detected 165 apps that
ReCon did not identify, while it did not flag 42 apps that

Zhttps://github.com/secure-software-engineering/DroidBench
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FlowDroid (Static taint analysis) 44
Andrubis/TaintDroid (Dynamic taint analysis) 72
AppAudit (Static & dynamic taint flow) 46
ReCon (Network flow analysis) 155
AGRIGENTO 278

ReCon identified. We manually checked the results to verify the
correctness of our approach. Among the 42 AGRIGENTO did
not detect, 23 did not generate any network traffic during our
analysis. This may be due to different reasons, for instance
different UI exploration (ReCon manually explored part of
the dataset), or because the version of the app under analysis
does not properly work in our test environment. We manually
inspected the network traffic generated by the remaining 19
apps. In particular, we manually verified whether each network
trace contained any of the values of the sources of private
information that we considered, and we also checked for known
transformations, such as MD5 hashes and Base64 encoding.
In all cases, we did not identify any leak (i.e., we did not
identify any false negatives). We acknowledge that this manual
evaluation does not exclude the presence of false negatives.
However, we consider this an encouraging result nonetheless.

To perform a more thorough evaluation of false negatives,
we also performed an additional experiment. Since one main
challenge when comparing approaches based on dynamic
analysis is related to GUI exploration differences, we asked
the authors of ReCon to run their tool on the network traffic
dumps we collected during our analysis. In this way, it is
possible to compare both tools, ReCon and AGRIGENTO, on
the same dynamic trace. On this dataset, ReCon flagged 229
apps for leaking information. AGRIGENTO correctly detected
all the apps identified by ReCon, and, in addition, it detected
49 apps that ReCon did not flag. This evaluation shows that,
also for this experiment, AGRIGENTO did not show any false
negatives. Moreover, we also looked for false positives, and
we manually verified the 49 apps detected by AGRIGENTO and
not by ReCon. Our manual analysis revealed that 32 of the 49
apps did indeed leak at least one source of private information,
which should then be considered as true positives (and false
negatives for ReCon). For further 5 apps we could not confirm
the presence of a leak and thus classify them as false positives
produced by our system. We cannot classify the remaining 12
cases as either true or false positives because of the complexity
of reversing these apps.

BayesDroid dataset. We obtained the dataset used by Bayes-
Droid and analyzed the apps with AGRIGENTO. For the
comparison we considered the common sources of information
supported by both AGRIGENTO and BayesDroid (i.e., IMEI,
IMSI, Android ID, location, contacts). BayesDroid flagged 15
of the 54 apps. However, since this dataset contains older app
versions (from 2013) 10 apps did not work properly or did not
generate any network traffic during our analysis. Nevertheless,
AGRIGENTO flagged 21 apps, including 10 of the 15 apps
identified by BayesDroid. As we did for the ReCon dataset,
we manually looked at the network traces of the remaining
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TABLE III.

NUMBER OF APPS DETECTED BY AGRIGENTO IN THE 100 MOST POPULAR APPS (JULY 2016) FROM THE GOOGLE PLAY STORE. THE COLUMN

“ANY” REFERS TO THE NUMBER OF APPS THAT LEAK AT LEAST ONE OF THE PRIVATE INFORMATION SOURCES.

Results | Any | Android ID IMEI MAC Address IMSI ICCID Location Phone Number Contacts
Plaintext 31 30 13 5 1 0 1 0 0
TPs Encrypted 22 18 9 3 5 0 0 0 0
Obfuscated | 11 8 5 6 0 0 1 0 0
Total 42 38 22 11 6 0 1 0 0
FPs ‘ 4 ‘ 5 9 11 13 13 11 16 13

5 apps and we did not see any leak (3 of them did not
produce any network traffic, furthermore BayesDroid used
manual exploration of all apps). Interestingly, AGRIGENTO
detected 11 apps that BayesDroid did not. We found that 6
of these apps used obfuscations that BayesDroid does not
detect. For instance, one app included the InMobi SDK that
performs a series of encodings and encryptions on the Android
ID before leaking it. We describe this case in detail in
Moreover, the other 5 apps used Android APIs to hash or
encrypt data structures (e.g., in JSON format) containing private
information sources, again showing that our system detects cases
that previous work cannot.

E. Privacy Leaks in Popular Apps

To evaluate AGRIGENTO on a more recent dataset, we
analyzed the current (July 2016) 100 most popular apps from
the Google Play Store in more detail. AGRIGENTO identified
privacy leaks in 46 of the 100 apps. We manually verified the
results of our analysis to measure false positives. We found that
42 of these apps are true positives, that is, they leak private
information, while four apps were likely false positives. Note
that, in some cases, to distinguish true positives from false
positives we had to manually reverse the app. During our manual
analysis, we did not encounter any false negative. Once again,
we acknowledge that, due to the absence of a ground truth, it is
not possible to fully exclude the presence of false negatives. In
particular, as further discussed in AGRIGENTO is affected
by a number of limitations, which a malicious app could take
advantage of.

We then used our risk analysis to rank the risk associated
with these false positives. Interestingly, we found that while two
of the four apps that caused false positives have high scores (i.e.,
8,527 and 8,677 bits), for the other two apps, one in particular,
AGRIGENTO assigned low scores of 6 and 24 bits. We note that
although for this work we use our risk analysis only to rank the
risk of a data leak in each detected app, we believe it could be
used to build, on top of it, a further filtering layer that discards
low bandwidth leaks. We will explore this direction in future
work.

We further classified the type of leak in three groups:
plaintext, encrypted, and obfuscated. The first group contains
apps that leak the information in plaintext. The second group
contains apps for which we observed the leaked information
only after our decryption phase (i.e., the leaked value has been
encrypted or hashed using the Android APIs). Finally, the third
group contains apps that obfuscate information leaks by other
means (i.e., there is no observable evidence of the leaked value
in the network traffic).
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As a first experiment, we considered leaks only at the app
level since we are interested in determining whether an app leaks
information or not, independently from the number of times.
In other words, we are interested to determine whether a given
app leaks any sensitive information. Thus, for each app analysis
we performed just one final run for which we modified all
the sources simultaneously. As a result, AGRIGENTO produces
a boolean output that indicates whether an app leaks private
information or not, without pointing out which particular source
has been leaked. Table [[II| shows the results of this experiment.
For this experiment, we consider an app as a true positive when
it leaks any of the monitored sources and AGRIGENTO flags it,
and as a false positive when AGRIGENTO flags it although it
does not leak any information.

While this experiment provides valuable insights, it provides
only very coarse-grained information. Thus, as a second experi-
ment, we performed the same evaluation but we looked at each
different source of information individually. In this case, we
ran the app and performed the differential analysis changing
only one source at a time, and we consider an app as a true
positive only if it leaks information from the modified source
and AGRIGENTO correctly identifies the leak. Our evaluation
shows that, while AGRIGENTO produces higher false positives
in identifying leaks for a specific source of information, it has
very few false positives in detecting privacy leaks in general.
The higher false positive rate is due to some sources of non-
determinism that AGRIGENTO failed to properly handle and
that consequently cause false positives when an app does not
leak data. For instance, consider the scenario in which an app
leaks the Android ID and also contains some non-determinism
in its network traffic that AGRIGENTO could not eliminate.
In this case, when considering leaks at app-level granularity,
we consider the app as a true positive for the Android ID,
since it does leak the Android ID. Instead, for any other
source of information (e.g., the phone number) we consider
the app as a false positive because of the non-determinism in
the network traffic. Finally, we could not classify 9 apps, for
which AGRIGENTO identified leaks of some of the sources,
because of the complexity of reversing these apps.

F. Case Studies

We manually reversed some apps that AGRIGENTO automat-
ically identified as leaking obfuscated or encrypted information.
Here, we present some case studies showing that current apps
use sophisticated obfuscation and encryption techniques. Hence,
as confirmed by the results of our evaluation, state-of-the-art
solutions to identify privacy leaks are not enough since they do
not handle these scenarios and mostly only consider standard
encodings.
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Fig. 8. Example of the requests performed by InMobi and ThreatMetrix
libraries. InMobi leaks the Android ID, as described in in the value of
u-id-map. ThreatMetrix leaks the Android ID, location, and MAC address
in the ja variable.

Interestingly, all the leaks we found in these case studies
were performed by third-party libraries, and thus may concern
all the apps using those libraries.

Case study 1: InMobi. We found that InMobi, a popular ad
library, leaks the Android ID using several layers of obfuscation
techniques. The Android ID is hashed and XORed with a
randomly generated key. The XORed content is then encoded
using Base64 and then stored in a JSON-formatted data structure
together with other values. The JSON is then encrypted using
RSA (with a public key embedded in the app), encoded using
Base64 and sent to a remote server (together with the XOR
key). Figure 8| shows an example of such a request leaking the
obfuscated Android ID. AGRIGENTO automatically identified
20 apps in our entire dataset leaking information to InMobi
domains, including one app in the 100 most popular apps from
the Google Play Store. Indeed, according to AppBrain’, InMobi
is the fourth most popular ad library (2.85% of apps, 8.37% of
installs).

Case study 2: ThreatMetrix. The analytics library Threat-
Metrix leaks multiple sources of private information using
obfuscation. It first puts the IMEI, location, and MAC address
in a HashMap. It then XORs this HashMap with a randomly
generated key, hex-encodes it, and then sends it to a remote
server. Figure [§] shows an example of such a request leaking
the obfuscated Android ID, location, and MAC address. We
found 15 instances of this scenario in our entire dataset, one of
which is part of the 100 most popular apps from the Google
Play Store. According to AppBrain, ThreatMetrix SDK is used
by 0.69% of the apps in the Google Play Store, and is included
by 4.94% of the installs.

Further ad libraries. We found several other apps and ad
libraries (MobileAppTracking, Tapjoy) leaking private informa-
tion using the Android encryption and hashing APIs. In the most
common scenario, the values are combined in a single string that
is then hashed or encrypted. In this scenario, even though the
app uses known encodings or cryptographic functions, previous
tools are not able to detect the leak of private information.

3http://www.appbrain.com/stats/libraries/ad
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G. Performance Evaluation

We execute each app for 10 minutes during each run. The
analysis time per app mainly depends on the complexity of the
app (i.e., the number of runs required to reach convergence).
Setting K 3, AGRIGENTO analyzed, on average, one
app in 98 minutes. Note that, while we executed each run
sequentially, our approach can easily scale using multiple
devices or emulators running the same app in parallel.

VII. LIMITATIONS AND FUTURE WORK

While we addressed the major challenges for performing
differential analysis despite the overall non-determinism of the
network traffic of mobile apps, our overall approach and the
implementation of AGRIGENTO still have some limitations.

Even though AGRIGENTO improves over the existing state-
of-the-art, it still suffers from potential false negatives. For
example, as any other approach relying on the actual execution
of an app, AGRIGENTO suffers from limited code coverage, i.e.,
an app might not actually leak anything during the analysis,
even if it would leak sensitive data when used in a real-world
scenario. This could happen for two main reasons: (a) An app
could detect that it is being analyzed and does not perform any
data leaks. We address this issue by performing our analysis on
real devices; (b) The component of the app that leaks the data
is not executed during analysis, for example due to missing
user input. We currently use Monkey, which only generates
pseudorandom user input and cannot bypass, for example, login
walls. Related works such as BayesDroid and ReCon performed
manual exploration of apps at least for part of the dataset, which
also included providing valid login credentials. Unfortunately,
manual exploration is only feasible for small-scale experiments
and not on a dataset of over one thousand apps such as ours,
especially given the fact that AGRIGENTO needs to generate
the same consistent user input over multiple executions. As part
of our future work, we are planning to explore whether it is
possible to provide manual inputs for the first run of an app, and
then replaying the same input with tools such as RERAN [20]
in the subsequent runs. One option for collecting the initial
manual inputs at scale is Amazon Mechanical Turk.

Second, AGRIGENTO still suffers from some covert channels
that an attacker could use to leak information without being
detected. For instance, a sophisticated attacker could leak private
information by encoding information in the number of times a
certain request is performed. However, this scenario is highly
inefficient from the attacker point of view. Furthermore, we
could address this issue with a more accurate description of the
“network behavior summary.” As a matter of fact, AGRIGENTO
severely limits the bandwidth of the channel an attacker can
use to stealthily trasmit private data.

We need to run each app multiple times: by nature, an
approach using differential analysis requires at least two execu-
tions, one with the original inputs, and another one with different
inputs to observe changes in the outputs. As we discussed in our
evaluation, the non-deterministic network behavior of modern
apps further requires us to perform the original execution more
than once to build a more accurate network behavior summary.
Since we conservatively flag any changes in the output as a
possible leak, in practice the number of runs is a trade-off
between the overall analysis time and the false positive rate.
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Furthermore, we perform the final run once for each source of
private information that we track. This requirement could be
relaxed if our goal was to find privacy leaks in general, and not
specific types of information. In our evaluation we performed
all runs of a specific app consecutively on the same device. We
could parallelize this process on different devices, however, with
less control over device-specific artifacts that could potentially
influence our analysis.

On the implementation side we suffer from two main
limitations: First, we currently do not instrument calls to
/dev/random, which could be used by native code directly
as a source of randomness. We leave this issue for future work.
Second, we are limited by the protocols we track: we only
check HTTP GET and POST requests for leaks (and man-
in-the-middle HTTPS even with certificate pinning in most
cases). However, we share this limitation with other tools, such
as ReCon, and leave an extension of AGRIGENTO to other
protocols for future work.

By design, AGRIGENTO can only determine that a specific
piece of private information was leaked, but not automatically
determine how it was obfuscated. We can, however, perform
the naive approach employed by related tool of simple grepping
for widely-used encodings and hashing algorithms of the value,
to filter out those cases and focus manual reverse engineering
efforts on the more complex and interesting ones.

Finally, we can only speculate why app developers are
adopting the stealth techniques that we have uncovered in our
analysis. This development could be related to the increasing
awareness and opposition of users to the collection of their
private data, as well as the investigative efforts of regulators
such as the FTC. Currently, InMobi is very open about the
data it collects in its privacy policyE] For future work we could
investigate any malicious intent or deceptive practice behind
sophisticated obfuscation techniques, based on automatically
verifying whether those leaks are in violation of an app’s privacy
policy or not. Related work in this direction by Slavin [38] has
so far only compared privacy policies against information flows
identified with FlowDroid, but has not considered cases in which
apps are hiding their leaks with the techniques AGRIGENTO
uncovered.

VIII. RELATED WORK

Static taint analysis of Android apps is an active research
topic, as several aspects of Android apps proved to be very
challenging—in particular their component-based architecture
and the multitude of entry points due to their user-centric
nature and complex lifecycle. AndroidLeaks [19] was one of
the first static taint analysis approaches, but lacks precision
as it tracks data flow at the object-level instead of tainting
their individual fields. FlowDroid [6] is more precise in this
regard and one of the most widely used static taint analy-
sis tools. Further approaches include EdgeMiner [9], which
addresses the issue of reconstructing implicit control flow
transitions, and Amandroid [44] and IccTA [25]], which deal
with inter-component instead of just intra-component data leaks.
MorphDroid [17] argues that conventional data flow tracking
approaches are too coarse-grained, and tracks atomic units of
private information instead of the complete information (i.e.,

4http://www.inmobi.com/privacy-policy/
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longitude and latitude instead of the location) to account for
partial leaks. Applntent [48] proposes to distinguish between
user-intended and covert data leaks and uses symbolic execution
to determine if a privacy leak is a result of user interaction.
AppAudit [46] addresses the false positives of related static
analysis approaches and verifies the detected leaks through
approximated execution of the corresponding functions.

Dynamic taint analysis tracks information flow between
sources of private information and sinks, e.g., the network,
during runtime, either by modifying the device OS (Taint-
Droid [13]]), the platform libraries (Phosphor [8]), or the
app under analysis (Uranine [33]). AppFence [22] extends
TaintDroid to detect obfuscated and encrypted leaks, and also
performed a small-scale study on the format of leaks, but only
found the ad library Flurry leaking data in non-human readable
format in 2011— a situation that has drastically changed since
then as we showed in our study. BayesDroid [42] is similar
to TaintDroid, but addresses the problem of partial information
leaks. It compares tainted data tracked from a source of private
information to a network sink, and uses probabilistic reasoning
to classify a leak based on the similarity between the data at both
points. While aforementioned approaches only track data flow
in the Dalvik VM, there also exist approaches that also can track
data flow in native code: DroidScope [47] and CopperDroid [41]
perform full system emulation and inspect both an app’s Dalvik
and native code for the purpose of malware analysis, while
the recent TaintART extends TaintDroid to native code [40].
However, ultimately, taint analysis approaches are vulnerable
to apps deliberately disrupting the data flow: ScrubDroid [36]
discusses how dynamic taint analysis systems for example can
be defeated by relying on control dependencies (which related
approaches usually do not track), or by writing and reading a
value to and from system commands or the file system.

Most recently, related work has explored detecting privacy
leaks at the network level, usually through network traffic
redirection by routing a device’s traffic through a virtual private
network (VPN) tunnel and inspecting it for privacy leaks on
the fly. Tools such as PrivacyGuard [39]], AntMonitor [24], and
Haystack [34], perform their analysis on-device using Android’s
built-in VPNService, but rely on hardcoded identifiers, or simply
grep for a user’s private information. Liu et al. [27] inspect
network traffic at the ISP-level and identify private information
leaks based on keys generated from manual analysis and regular
expressions. Encryption and obfuscation are out of scope of the
analysis, as the authors assume this scenario is only a concern
for malware. ReCon [35] is another VPN-based approach, which
uses a machine learning classifier to identify leaks and can deal
with simple obfuscation. In the end, it relies on the data on
which it is trained on—which can come from manual analysis
and dynamic taint analysis tools—and it could benefit from
a technique such as AGRIGENTO to deal with more complex
obfuscation techniques.

Information leakage is not a new problem and not unique to
Android apps: related work on desktop applications has focused
on identifying (accidental) leaks of private information through
differential analysis at the process-level. TightLip [49] and Croft
et al. [[10] perform differential analysis on the output of two
processes, one with access to private data, and one without. Both
consider timestamp-related information and random seeds as
sources of non-determinism and share them between processes.
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Ultimately, their main goal is to prohibit the accidental leakage
of private information, more specifically, sensitive files, and
not obfuscated content. To this end, TightLip checks if the
system call sequences and arguments of the two processes
diverge when the private input changes, and consequently raises
an alarm if the output is sent to a network sink. In contrast,
Croft et al. only allow the output of the process without
access to private information to leave the internal company
network. The approach of Privacy Oracle [23] is related to
AGRIGENTO: it identifies privacy leaks based on divergences
in the network traffic when private input sources are modified.
However, it mainly addresses non-determinism at the OS-level
(i.e., performing deterministic executions using OS snapshots)
and does not consider non-determinism in network traffic. In
fact, it cannot handle random tokens in the network traffic,
nor encryption, and produces false positives when messages in
network flows are reordered between executions.

Finally, Shu et al. [37] propose a sequence alignment
algorithm for the detection of obfuscated leaks in files and
network traffic, which assigns scores based on the amount of
private information they contain. While this approach focuses on
the detection of obfuscated leaks, it explicitly does not address
intentional or malicious leaks, and only considers character
replacement, string insertion and data truncation.

In contrast to related work, we are the first to address the
topic of obfuscation of privacy leaks in order to deal with
adversaries, i.e., apps or ad libraries actively trying to hide the
fact that they are leaking information. As we have shown in our
evaluation, this is a very realistic threat scenario and a practice
that is already common amongst popular mobile apps and ad
libraries.

IX. CONCLUSION

We showed that while many different approaches have
tackled the topic of privacy leak detection in mobile apps, it is
still relatively easy for app and ad library developers to hide
their information leaks from state-of-the-art tools using different
types of encoding, formatting, and cryptographic algorithms.
This paper introduces AGRIGENTO, a new approach that is
resilient to such obfuscations and, in fact, to any arbitrary
transformation performed on the private information before it is
leaked. AGRIGENTO works by performing differential black-box
analysis on Android apps. We discussed that while this approach
seems intuitive, in practice, we had to overcome several key
challenges related to the non-determinism inherent to mobile
app network traffic.

One key insight of this work is that non-determinism in
network traffic can be often explained and removed. This
observation allowed us to develop novel techniques to address
the various sources of non-determinism and it allowed us to
conservatively flag any deviations in the network traffic as
potential privacy leaks. In our evaluation on 1,004 Android apps,
we showed how AGRIGENTO can detect privacy leaks that state-
of-the-art approaches cannot detect, while, at the same time,
only incurring in a small number of false positives. We further
identified interesting cases of custom and complex obfuscation
techniques, which popular ad libraries currently use to exfiltrate
data without being detected by other approaches.
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