34

IEEE EMBEDDED SYSTEMS LETTERS, VOL. 5, NO. 3, SEPTEMBER 2013

A Security Layer for Smartphone-to-Vehicle
Communication Over Bluetooth

A. Dardanelli, F. Maggi, M. Tanelli, S. Zanero, S. M. Savaresi, R. Kochanek, and T. Holz

Abstract—Modern vehicles are increasingly being intercon-
nected with computer systems, which collect information both
from vehicular sources and Internet services. Unfortunately,
this creates a nonnegligible attack surface, which extends when
vehicles are partly operated via smartphones. In this letter, a
hierarchically distributed control system architecture which inte-
grates a smartphone with classical embedded systems is presented,
and an ad-hoc, end-to-end security layer is designed to demon-
strate how a smartphone can interact securely with a modern
vehicle without requiring modifications to the existing in-vehicle
network. Experimental results demonstrate the effectiveness of
the approach.

Index Terms—Automotive systems, embedded architecture, se-
curity, smartphone, two-wheeled vehicles.

I. INTRODUCTION

HE current trend in automotive products and services is

to improve the accessibility of the vehicles through novel
services, which require a connection to some Internet-based
source. This is used both to collect information on the external
environment (e.g., traffic conditions, weather forecasts, vehicle
position and orientation, often integrated within the on-board
vehicle control systems), and to offer “infotainment” services.
In doing so, the new devices that interact with the vehicle (e.g.,
modern infotainment systems, GSM, and Bluetooth connec-
tions) lead to an increased attack surface, which may enable an
adversary to break into the vehicle itself, causing severe safety
hazards. Recently, several researchers highlighted this aspect
and successfully demonstrated attacks against different vehi-
cles [1], [2]. Each of these works showed that it was possible
to take control of certain functionalities of the vehicle, and
interfere with safety-critical or sensitive components. These
vulnerabilities hamper novel solutions (e.g., smartphones to
unlock the vehicle door or to start the engine), because of
the risk of successful attacks. Adding security mechanisms
to vehicles is a challenging task, as the related embedded
architectures are commonly designed with safety requirements
rather than security ones in mind. In addition, the available

Manuscript received January 23, 2013; accepted April 18, 2013. Date of pub-
lication June 21, 2013; date of current version August 26, 2013. This work was
supported by the EU FP7 Project “SysSec” (257007). Opinions, findings, and
conclusions or recommendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of the EU Commission. This man-
uscript was recommended for publication by A. Ghosal.

A. Dardanelli, F. Maggi, M. Tanelli, S. Zanero, and S. M. Savaresi are with
the Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milano
20133, Italy (e-mail: dardanellielet.polimi.it; maggielet.polimi.it; tanelli,
zaneroelet.polimi.it; savaresi@elet.polimi.it).

R. Kochanek and T. Holz are with the Department of Electrical Engineering
and Information Technology, Ruhr-University Bochum, Bochum 44801, Ger-
many (e-mail: roman.kochanek@rub.de; thorsten.holz@rub.de).

Digital Object Identifier 10.1109/LES.2013.2264594

computing resources are in general tailored to fit tightly to the
control systems needs, in order to limit the costs. This obvi-
ously restricts the options available for adding a security layer
in subsequent redesign phases. Recently, however, security
requirements are gaining more and more priority, especially in
the communication between embedded computers with ad-hoc
wireless networks (see, e.g., [3]).

In this letter, we consider a smartphone-in-the-loop vehicle
architecture in the use case of a two-wheeled vehicle (see [4]).
We propose a security solution that protects against attacks by
addressing the challenges raised above, meeting both perfor-
mance and real-time constraints. Furthermore, we explicitly
take the capabilities of the target architecture into account (i.e.,
no input capabilities on the vehicle side, limited output capabil-
ities, and lack of a trusted execution environment on the mobile
device). Our proposed solution allows a smartphone to estab-
lish a secure session layer over an insecure radio connection,
which provides additional security guarantees regardless of the
security mechanisms already implemented in the physical layer
(if any). As a result, the entire application layer is transparently
secured. The applicability and the effectiveness of the proposed
solution is corroborated by experimental results.

The structure of this letter is as follows. Section II presents the
vehicle embedded architecture, while Section III details the re-
lated security issues. Further, Section IV describes the designed
security solution. Section V, the experimental results are pre-
sented and discussed.

II. SYSTEM ARCHITECTURE

The system architecture under consideration directly relates
to the vehicle control logic. As detailed in [4], the control logic
can be split into two main stages: the “high-level” stage take
cares of the vehicle motion and energy control, while the “low-
level” stage takes care of data acquisition and actuation. This
layout is quite common in complex automotive control systems,
as they are often characterized by cascade structures that ex-
ploit the frequency-separation paradigm in order to decouple
nested control loops. Accordingly, we translate the logical di-
vision between the two control loops into a technological sep-
aration: The high-level and the low-level control routines run
on different devices, thus leading to a hierarchically distributed
control system. The border between these two levels of ab-
straction may be traced according to different policies such as
computational considerations, safety issues, technological con-
straints. Clearly, the two subsystems must share information.
As a consequence, a communication channel that guarantees
the robust and persistent interconnection between the two sub-
systems is needed. Thus, as depicted in Fig. 1, the system ar-
chitecture comprises two main elements. The first element is
the Gateway electronic control unit (ECU), which is physically
mounted on the vehicle, runs the low-level control logic, and

1943-0663 © 2013 IEEE

DARDANELLI et al.: A SECURITY LAYER FOR SMARTPHONE-TO-VEHICLE COMMUNICATION OVER BLUETOOTH 35

Mobile device Communication channel Gateway ECU Vehicle
_——— | Application e? Embedded %
= application m AN
Security layer Propietary PP SRS [\“
Middleware wireless stack Security layer / Y % >
. mess’age d d d ’;, o s
Mobile OS Ao\\‘\a\.\o“ 5 (((Hardware Hardware E > —
. P R P
wess A
_9 Hardware)))) T eedback T T i
UART CAN

Trusted domain

Untrusted domain

High-level controller

{Vb ”b}

SoC

s

Trusted domain ——wh secu{rlty layer
B T — w/ security layer

Low-level controllers

Speed / Acc. 8. Vehicle _r.f

controller

Controllers dynamics

a T v Vin
(4 [

Observer 8.

+

Reference
generator

du
¢

Estimator v,

Fig. 1. System overview. The hierarchically distributed architecture and the security layer extensions are based on our approach of trusted domains.

communicates with sensors and actuators via an in-vehicle net-
work (e.g., the CAN bus). The Gateway ECU is equipped with a
radio interface that allows wireless communication between the
in-vehicle network and external devices. The second element is
an external device that works closely with the vehicle ECUs via
the radio interface. In our scenario, the external device is a mo-
bile device that runs the high-level control routines and acts as a
driver-to-vehicle interface. This paradigm is very appealing and
is gaining increasing interest among vehicle manufacturers, as
drivers are likely to be already familiar with mobile apps, and
because this deployment method facilitates both software up-
dates and the integration with other web-based services [5].
We successfully implemented the aforementioned system ar-
chitecture. Specifically, we implemented an intelligent range ex-
tender for lightweight electric vehicles, with the goal of opti-
mizing the energy consumption by actively modifying the ve-
hicle dynamic behavior, as detailed in [4]. This task is accom-
plished with a two-layer structure. A high-level controller keeps
track of a reference profile, £,.¢, for the battery state of charge
(SoC), £. The profile is generated by taking into account the
route length and its elevation profile, as detailed in [6]. The mo-
bile device implements the SoC controller within an ad-hoc app
that we developed, which also includes navigation features that
leverage on Internet-based services (e.g., Google Maps API).
Furthermore, the low-level control loops enforce speed and ac-
celeration constraints (v and a, in, which allow to meet the de-
sired energy consumption profile. The low-level controllers act
on the gas handle opening g. to guarantee that the dynamical be-
havior of the vehicle (i.e., speed v, and acceleration a.) is kept
within the prescribed limits. The Gateway ECU implements and
executes the low-level control loops on a 16-bits dsPIC micro-
controller with a CPU speed of 20 Mips [7], and communicates
with sensors and actuators via CAN bus. The Gateway ECU and
the mobile device communicate via a Bluetooth layer. They ex-
change both initialization and real-time control data. Initializa-
tion data is packed into a 48 bytes frame and the communication
is unidirectional—from the mobile device to the gateway ECU.
On the contrary, the real-time communication is bidirectional:
The Gateway ECU sends a 64-bytes payload every 0.2 s (5 Hz),
whereas the mobile device communicates a 6-bytes control-data
packet every time the vehicle travels 50 m. Simulation results
and experimental data collected on a prototype light 2-wheeled

electric vehicle prove the effectiveness and the robustness of
the proposed approach. The vehicle equipped with the SoC con-
troller saves approximately 20% of the energy supplied by the
battery, with respect to a nominal driving behavior.

III. SECURITY ISSUES

In the aforementioned scenario, the mobile device and the
Gateway ECU exchange sensitive data. If this data is compro-
mised by an adversary, then the functionality of the control
system, and thus the vehicle “driveability” may be severely af-
fected: Depending on the attacker’s skills, the driver even could
loose the control of the vehicle. Our focus is on the Bluetooth
layer. The protocol has a two-phase session setup: after the
pairing process, which allows the peers to get to know each
other and set up the network properties, the actual communi-
cation is enabled. Depending on the protocol version, different
security features are available. However, the early Bluetooth
standard and its successors, with the introduction of the secure
simple pairing (SSP) protocol [8], suffer from various secu-
rity vulnerabilities due to weak cryptographic primitives, as dis-
cussed in [9], [10]. The security of most Bluetooth applications
(e.g., in embedded scenarios) relies on a static PIN only, with
no way to change it.

IV. A SECURITY LAYER FOR AUTOMOTIVE SERVICES

Given the application scenario and the aforementioned secu-
rity issues, it is necessary to devise an application-level secu-
rity mechanism that mitigates the vulnerabilities that lie in the
wireless link. Such security layer must be independent from the
underlying wireless layer and must allow secure communica-
tion between the mobile device and the vehicle. In our attack
model the adversary knows the radio protocol in use, and is able
to transmit and receive arbitrary data packets on the radio in-
terface. The objective of the attacker is to obtain access to the
information exchanged between the vehicle and the mobile de-
vice, and ultimately manipulate the ECU execution flow. We
concentrate on the application layer. Therefore, attacks against
the physical layer (e.g., jamming) or attacks that require phys-
ical, even temporary, access to the vehicle (e.g., forceful shut-
down) fall outside the scope of our security layer.

36

Authorization of amobile device (first stage)
Mobile device ECU

MDpgy. MDpyg
(random)

ECUpgy, ECUpyp
Publickeys Enablepairing
Compute long-term secret w/ ECDH

Secure Communication (second stage)

» Computenonce nonce,

= (random) a. SK _encgg {challenge}

2 ComputeSK a.
response

n
n encgg{response}
—

-.__ ..
u Verify response

encgg{data}
-
-

Fig. 2. Two stage security protocol: the session key (SK) is computed with a
nonce, and the long-term secret is computed via a key-derivation function.

A. Security Analysis

We derive the requirements of our security layer through the
evaluation of the application scenario by means of trust domains
and trust relationships between communicating parties (or enti-
ties). A party is considered a trusted domain if we trust its cor-
rect processing and execution of the software implementation,
and thus its integrity. Otherwise, we consider the party as an
untrusted domain. Depending on the characteristics and the se-
curity properties of the communication between entities, we can
define trusted relationships (or accepted dependence) between
entities. The trusted domains and relationships are summarized
in Fig. 1. Our solution is designed to account for security flaws
(e.g., unknown data leaks) or dependencies of the application
layer on proprietary parts of an ECU.

B. Secure Session Layer

Our security layer follows the two-stage protocol depicted in
Fig. 2. The first stage sets up an end-to-end trusted relationship
between both application layers (i.e., on the mobile device and
on the ECU). Due to the constraints of the scenario (e.g., dis-
tribution of the mobile application through app stores, connec-
tivity capabilities of the ECU), we do not assume any precom-
puted, static credentials or cryptographic keys on the mobile de-
vice, nor use a public-key infrastructure on the ECU: Only the
vehicle’s owner is able to initiate the first stage by enabling the
one-off authorization procedure on the vehicle’s side. For in-
stance, this procedure can be enabled by pushing a button—only
reachable using the vehicle key. A classic PIN-based procedure
is not always feasible, due to the limited input capabilities on
the ECU side (e.g., absence of keypads). Within a short time
span the ECU accepts a mobile device’s identity and the user
receives the identity information of the ECU, respectively. The
second stage ensures that the real-time communication require-
ments are met. To this end, it implements a symmetric cryp-
tographic scheme that establishes a secure communication ses-
sion. The symmetric session key is derived from the long-term
secret exchanged during the first stage, plus some random data
generated on the mobile device.

We implemented our two-stage approach on the Gateway
ECU’s microcontroller. We used a ECDH key-establishment
scheme (asymmetric cryptography) [11] on a standardized curve
(NIST P-192) [12]. For each authentication process, the mobile
device computes a new random key set and transmits the cor-
responding public key to the ECU. In contrast to the key set of

IEEE EMBEDDED SYSTEMS LETTERS, VOL. 5, NO. 3, SEPTEMBER 2013

the mobile device, the ECU possesses a static long-term key set
for the key establishment scheme (see C(1,1) in [11]). For the
session encryption, we implemented AES in a chaining block ci-
pher (CBC) mode [13], [14] with a 128-bit key. The key-deriva-
tion function is implemented according to the standard and pro-
vides a fresh 128-bit symmetric key for each session. For the
implementation of our security layer on the mobile device, we
choose the OpenSSL library. Besides these two cryptographic
schemes, we implemented the SHA-1 hash function and defined
a protocol structure for the integration in a communication pro-
tocol stack.

C. Security Evaluation

Our solution can mitigate the security threats described in
Section III under the adversary model described in Section IV.
The goal of our security layer is to prevent attacks through
the radio interface. As depicted in Fig. 1, our solution imple-
ments cryptographic session layer, which removes the depen-
dency from proprietary implementations, dramatically reducing
the risk of exploitation. Even if the attacker obtains access to the
ECU via the radio interface, the application data is encrypted
with the session key. The attacker has less chances of obtaining
the cryptographic, long-term secret, than in a regular Bluetooth
pairing. In particular, a man-in-the-middle attack is difficult to
conduct: the attacker would need to be within the communica-
tion range: 1) during the legacy Bluetooth pairing process; and
2) during the first stage of our security protocol (i.e., the ex-
change of the public keys). Only the vehicle owner can enable
the authorization process for a mobile device (e.g., in his own
garage) and, more importantly, within a predefined and short
time span. Instead of compromising the ECU’s security layer, an
attacker may perform a dedicated attack against the mobile de-
vice (e.g., mobile malware). Our security framework addresses
this type of security threat by providing the cryptographic mech-
anisms under the developer’s authority and is flexible with re-
spect to future updates to the mobile device or operating system.
In fact, we are able to change any cryptographic primitive or
protocol in order to protect from actual or future vulnerabilities.
We assume that the security of the mobile application—and thus
of our security layer—is based on the integrity of the operating
system and its services.

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results and ex-
plain the feasibility of our proposed solution. In our experi-
mental setting, the Gateway ECU is installed on a lightweight,
electric two-wheeled vehicle currently in production and man-
ufactured by Piaggio. As explained in Section II, the Gateway
ECU implements intelligent, range-extending algorithms. Our
security protocol has the two main working modes: pairing and
payload exchange. Pairing is active when the mobile device
is paired with the vehicle, after the typical Bluetooth pairing
mechanism has taken place. In pairing mode, we measured the
performance of the asymmetric cryptography both on the mo-
bile device and on the Gateway ECU, and the performance of
the key-generation routine (on the mobile device). The payload
exchange mode activates when the AES key are actually ex-
changed, and encrypted or decryption takes place. In this mode,
we analyzed the performance of the decryption (on the mobile
device) and the performance of the encryption (on the Gateway

DARDANELLI et al.: A SECURITY LAYER FOR SMARTPHONE-TO-VEHICLE COMMUNICATION OVER BLUETOOTH 37

TABLE I
AVERAGE EXECUTION TIMES (5000 TESTS). MD: MOBILE DEVICE; (G)
GATEWAY ECU; (S): SIMULATION AND (D) DRIVING MODE

MODE PHASE DEVICE AVERAGE VALUE TEST
Runtime Data encryption G 252 ms N
(64-bytes payload)
257 ms D
MD 3398 s S
345 s D
Pairing Key establishment G 13131 ms S
protocol
13143 ms D
MD 71612 ps D
EC key generation MD 6939.8 us D

ECU). The payload consists of 64 bytes of data, which includes
a padding scheme for supporting arbitrary payload size.

The pairing is a one-shot task, whereas the system normally
works in payload-exchange mode. At runtime, the payload ex-
change must satisfy real-time constraints. Here, the bottleneck
lies in the Bluetooth stack, because the AES encryption-decryp-
tion of the 64-bytes payload is executed every time one of the
peers transmits or receives a message via Bluetooth (i.e., every
200 ms). To test its performance, we collected runtime data both
on a simulator and on a real implementation on the test ve-
hicle, to ensures an accurate characterization. Both at runtime
and pairing time, the execution time is a significant performance
indicator. Table I summarizes the results that we obtained (aver-
aged on all experiments). The results support the feasibility of
the proposed approach in practical applications. As expected,
the bottleneck of the key exchange is the Gateway ECU due to
its lower CPU speed: The execution time is approximately 130
ms—20 time bigger than the average time recorded on the mo-
bile device.

Last, we analyzed the instantaneous Bluetooth sending fre-
quency, f;, which provides a concise view of the impact of the
security layer on the real-time exchange of data. To this end, we
measured the time interval AT between two received frames on
the smartphone, and computed the frequency as f, = 1/AT =
1/(AT; + AT, + AT, + AT;), where ATy and AT, are the
time of the decryption and of the encryption, respectively; AT,
is a random time interval between two sent messages, whereas
AT, is the time needed by the Bluetooth stack to send and re-
ceive data.

The average values of the Bluetooth frequency with and
without the security layer are 4.83 Hz and 5.01 Hz, respec-
tively. The cause of this slight discrepancy is twofold. On the
one hand, the security layer introduces a delay because the
terms ATy and AT, are significant(see Table I). On the other
hand, the size of the message sent via Bluetooth is 40% larger
if the security layer is enabled, and different payload sizes
induce different behaviors. In general, the increased size of the
message decreases the Bluetooth frequency due to the low-level
mechanisms implemented in the Bluetooth stack. Despite this
slight decrease of sending frequency, the performance of the
closed-loop system is not affected by the security routines when
the high-level control strategies equipped with this additional
layer are tested.

VI. FUTURE WORK

First, depending on the specific needs of the application
domain or case study (e.g., ECU or mobile device upgrades),

other encryption algorithms may be implemented and tested.
For example, if a security session layer must be established
with less-powerful ECUs, lightweight cryptographic algorithms
such as PRESENT [15] might be more suitable. Interestingly,
embedding other algorithms in our system only requires im-
plementation—in assembly, as we did for AES/FIPS 197 and
ECDH/NIST P-192—and integration. Secondly, the impact of
the security layer on battery life should be measured, although
we expect no remarkable results. Indeed, as our security layer
barely affects the execution time, the computational resources
of the mobile device will be little affected as well. Finally,
future work includes the requirements for security engineering
on embedded automotive devices considering software attack
surfaces (e.g., buffer overflows). The objective is to develop
appropriate countermeasures on the application layer for a
holistic security framework.

VII. CONCLUDING REMARKS

We analyzed and discussed the security issues related to
modern, smartphone-based automotive embedded architec-
tures. To cope with such issues, we designed, implemented and
evaluated a security layer that protects from an attacker that
has full control over the Bluetooth wireless link between the
mobile device and the vehicle. Thanks to our evaluation, we
showed the real-world applicability of our approach.

REFERENCES

[1] L. Rouf, R. Miller, H. Mustafa, T. Taylor, S. Oh, W. Xu, M. Gruteser,
W. Trappe, and 1. Seskar, “Security and privacy vulnerabilities of incar
wireless networks: A tire pressure monitoring system case study,” in
Proc. 19th USENIX Conf. Security, Berkeley, CA, USA, 2010, pp.
21-21.

[2] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S.
Savage, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno, “Compre-
hensive experimental analyses of automotive attack surfaces,” in Proc.
20th USENLX Conf. Security, Berkeley, CA, USA, 2011, pp. 6-6.

[3] F. Stajano, Security for Ubiquitous Computing. Hoboken, NJ, USA:
Wile, 2002.

[4] A. Dardanelli, M. Tanelli, B. Picasso, S. Savaresi, O. di Tanna, and M.
Santucci, “A smartphone-in-the-loop active state-of-charge manager
for electric vehicles,” IEEE ASME Trans. Mechatron., vol. 17, no. 3,
pp. 454463, 2012.

[5] C. Spelta, V. Manzoni, A. Corti, A. Goggi, and S. M. Savaresi, “Smart-
phone-based vehicle-to-driver/environment interaction system for mo-
torcycles,” IEEE Embed. Systems Lett., vol. 2, no. 2, pp. 39-42, Jun.
2010.

[6] A.Dardanelli, M. Tanelli, and S. M. Savaresi, “Active energy manage-
ment of electric vehicles with cartographic data,” presented at the 2012
IEEE Int. Electr. Veh. Conf., 2012.

[7] Microchip Technology Inc., 16-bit dsPIC® Digital Signal Controllers.

[8] NIST Special Publication 800-121 Revision 1, Guide to Bluetooth Se-
curity: Recommendations of the National Institue of Standards and
Technology 2012.

[9] C. Hager and S. Midkiff, “Demonstrating vulnerabilities in bluetooth
security,” in Proc. IEEE Global Telecommun. Conf. (GLOBECOM03),
2003, vol. 3, pp. 1420-1424.

[10] K. Haataja and P. Toivanen, “Two practical man-in-the-middle attacks
on bluetooth secure simple pairing and countermeasures,” IEEE Trans.
Wireless Commun. vol. 9, no. 1, pp. 384-392, Jan. 2010 [Online].
Available: http://dx.doi.org/10.1109/TWC.2010.01.090935

[11] NIST Special Publication 800-56A, Recommendation for Pair-Wise
Key Establishment Schemes Using Discrete Logarithm Cryptography.

[12] FIPS-186-3, Digital Signature Standard (DSS). NIST 2009.

[13] FIPS-197, Advanced Encryption Standard (AES). NIST 2001.

[14] NIST Special Publication 800-38A, Recommendation for Block Ci-
pher Modes of Operation - Methods and Techniques 2001.

[15] A.Bogdanov et al., “PRESENT-An ultra-lightweight block cipher,” in
Proc. Int. Workshop Cryptographic Hardware Embed. Syst. (CHES),
2007, pp. 450-466, ser. LNCS, no. 4727 Springer.

