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ABSTRACT
Web applications are constantly under attack. They are
popular, typically accessible from anywhere on the Internet,
and they can be abused as malware delivery systems.

Cross-site scripting flaws are one of the most common
types of vulnerabilities that are leveraged to compromise a
web application and its users. A large set of cross-site script-
ing vulnerabilities originates from the browser’s confusion
between data and code. That is, untrusted data input to
the web application is sent to the clients’ browser, where it
is then interpreted as code and executed. While new appli-
cations can be designed with code and data separated from
the start, legacy web applications do not have that luxury.

This paper presents a novel approach to securing legacy
web applications by automatically and statically rewriting
an application so that the code and data are clearly sep-
arated in its web pages. This transformation protects the
application and its users from a large range of server-side
cross-site scripting attacks. Moreover, the code and data
separation can be efficiently enforced at run time via the
Content Security Policy enforcement mechanism available
in modern browsers.

We implemented our approach in a tool, called deDa-
cota, that operates on binary ASP.NET applications. We
demonstrate on six real-world applications that our tool is
able to automatically separate code and data, while keeping
the application’s semantics unchanged.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]
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1. INTRODUCTION
Web applications are prevalent and critical in today’s com-

puting world, making them a popular attack target. Looking
at types of vulnerabilities reported in the Common Vulnera-
bilities and Exposures (CVE) database [11], web application
flaws are by far the leading class.

Modern web applications have evolved into complex pro-
grams. These programs are no longer limited to server-side
code that runs on the web server. Instead, web applications
include a significant amount of JavaScript code that is sent
to and executed on the client. Such client-side components
not only provide a rich and fast user interface, they also
contain parts of the application logic and typically commu-
nicate with the server-side component through asynchronous
JavaScript calls. As a result, client-side scripts are an inte-
gral component of modern web applications, and they are
routinely generated by server-side code.

There are two kinds of cross-site scripting (XSS) vulnera-
bilities: server-side and client-side. The latter is essentially
caused by bugs in the client-side code, while the former is
caused by bugs in the server-side code. In this paper we fo-
cus on server-side XSS vulnerabilities (unless specified oth-
erwise, we will use XSS to refer to server-side XSS). XSS
vulnerabilities allow attackers to inject client-side scripting
code (typically, JavaScript) into the output of web appli-
cations. The scripts are then executed by the browser as
it renders the page, allowing malicious code to run in the
context of the web application. Attackers can leverage XSS
attacks to leak sensitive user information, impersonate the
victim to perform unwanted actions in the context of the
web application, or launch browser exploits.

There has been a significant amount of research effort on
eliminating XSS vulnerabilities. The main line of research
has focused on sanitizing untrusted input [3, 13, 18, 22, 25,
27,34,38,40,44,46,48–50]. Sanitization attempts to identify
and “clean up” untrusted inputs that might contain Java-
Script code. Performing correct sanitization is challenging,
for a number of reasons. One reason is that it is difficult
to guarantee coverage for all possible paths through the ap-
plication [3, 48]. As part of this problem, it is necessary to
find all program locations (sources) where untrusted input
can enter the application, and then verify, along all program
paths, the correctness of all sanitization functions that are
used before the input is sent to the client (sinks). Further-
more, it is not always clear how to properly sanitize data,
because a single input might appear in different contexts in
the output of the application [40].



The root cause of XSS vulnerabilities is that the current
web application model violates the principle of code and data
separation. In the case of a web page, the data is the HTML
content of the page and the code is the JavaScript code.
Mixing JavaScript code and HTML data in the same channel
(the HTTP response) makes it possible for an attacker to
convince a user’s browser to interpret maliciously crafted
HTML data as JavaScript code. While sanitization tries to
turn untrusted input, which could potentially contain code,
into HTML data, we believe the fundamental solution to
XSS is to separate the code and data in a web page—the
way HTML and JavaScript should have been designed from
the start. Once the code and data are separated, a web
application can communicate this separation to the browser,
and the browser can ensure no code is executed from the data
channel. Such communication and enforcement is supported
by the new W3C browser standard Content Security Policy
(CSP) [42].

While new web applications can be designed with code
and data separated from the start, it has been a daunting
task to achieve code and data separation for legacy applica-
tions. The key challenge is to identify code or data in the
output of a web application. Previous solutions have relied
on either developers’ manual annotations or dynamic analy-
sis. For example, BEEP [20] requires developers to manually
identify inline JavaScript code. Blueprint [28] requires de-
velopers to manually identify the data by specifying which
application statements could output untrusted input. XSS-
GUARD dynamically identifies application-intended Java-
Script code in a web page by comparing it with a shadow
web page generated at run time [4]. The main problem
preventing these solutions from being adopted is either the
significant manual effort required from application develop-
ers or the significant runtime performance overhead. In fact,
Weinberger et al. [47] showed how difficult it is to manually
separate the code and data of a web application.

In this paper, we present deDacota, the first system that
can automatically and statically rewrite an existing web ap-
plication to separate code and data in its web pages. Our
novel idea is to use static analysis to determine all inline
JavaScript code in the web pages of an application. Specif-
ically, deDacota performs static data-flow analysis of a
given web application to approximate its HTML output.
Then, it parses each page’s HTML output to identify in-
line JavaScript code. Finally, it rewrites the web applica-
tion to output the identified JavaScript code in a separate
JavaScript file.

The problem of statically determining the set of (HTML)
outputs of a web application is undecidable. However, as we
observe in our evaluation, the problem is typically tractable
for real-world web applications. These applications are writ-
ten by benign developers and tend to have special proper-
ties that allow us to compute their outputs statically. For
instance, the majority of the inline JavaScript code is static
in the web applications we tested.

Dynamic inline JavaScript presents a second-order prob-
lem. Here, the JavaScript code itself (rather than the HTML
page) is generated dynamically on the server and may de-
pend on untrusted inputs. Again, the potential for XSS
vulnerabilities exists. deDacota provides a partial solution
to this problem by producing alerts for all potentially dan-
gerous instances of dynamic JavaScript generation in the

application and by safely sanitizing a large subclass of these
instances.

We implemented a prototype of deDacota to analyze and
rewrite ASP.NET [31] web applications. We then applied
deDacota to six open-source, real-world ASP.NET appli-
cations. We verified that all known XSS vulnerabilities are
eliminated. We then performed extensive testing to ensure
that the rewritten binaries still function correctly. We also
tested deDacota’s performance and found that the page
loading times between the original and rewritten applica-
tion are indistinguishable.

The main contributions of this paper are the following:

• A novel approach for automatically separating the code
and data of a web application using static analysis
(Section 4).

• A prototype implementation of our approach, deDa-
cota, applied to ASP.NET applications (Section 5).

• An evaluation of deDacota, showing that we are able
to apply our analysis to six real-world, open-source,
ASP.NET applications. We show that our implemen-
tation prevents the exploitation of know vulnerabili-
ties and that the semantics of the application do not
change (Section 6).

2. BACKGROUND
In this section, we provide the background necessary for

understanding the design of deDacota.

2.1 Cross-Site Scripting
Modern web applications consist of both server-side and

client-side code. Upon receiving an HTTP request, the
server-side code, which is typically written in a server-side
language, such as PHP or ASP.NET, dynamically generates
a web page as a response, based on the user input in the
request or data in a backend database. The client-side code,
which is usually written in JavaScript and is executed by
the browser, can be either inline in the web page or external
as a standalone JavaScript file.

Cross-site scripting (XSS) vulnerabilities allow an attacker
to inject malicious scripts into web pages to execute in the
client-side browser, as if they were generated by the trusted
web site. If the vulnerability allows the attacker to store ma-
licious JavaScript on the server (e.g., using the contents of
a message posted on a newsgroup), the vulnerability is tra-
ditionally referred to as “stored” or “persistent XSS.” When
the malicious code is included in the request and involun-
tarily reflected to the user (copied into the response) by the
server, the vulnerability is called “reflected XSS.” Finally, if
the bug is in the client-side code, the XSS vulnerability is
referred to as “DOM-based XSS” [24]. We call the first two
types of vulnerabilities “server-side XSS vulnerabilities” and
the latter “client-side XSS vulnerabilities.”

The root cause for server-side XSS is that the code (i.e.,
the client-side script) and the data (i.e., the HTML content)
are mixed together in a web page. By crafting some mali-
cious input that will be included into the returned web page
by the server-side code, an attacker can trick the browser
into confusing his data as JavaScript code.



2.2 Code and Data Separation
The separation of code and data can be traced back to

the Harvard Architecture, which introduces separate stor-
age and buses for code and data. Separating code and data
is a basic security principle for avoiding code injection at-
tacks [19]. Historically, whenever designs violate this prin-
ciple, there exists a security hole. An example is the stack
used in modern CPUs. The return addresses (code point-
ers) and function local variables (data) are co-located on
the stack. Because the return addresses determine control
transfers, they are essentially part of the code. Mixing them
together with the data allows attackers to launch stack over-
flow attacks, where data written into a local variable spills
into an adjacent return address. In the context of web ap-
plications, we face the same security challenge, this time
caused by mixing code and data together in web pages. To
fundamentally solve this problem, we must separate code
and data in web pages created by web applications.

2.3 Content Security Policy
Content Security Policy (CSP) [42] is a mechanism for

mitigating a broad class of content injection vulnerabilities
in web applications. CSP is a declarative policy that allows a
web application to inform the browser, via an HTTP header,
about the sources from which the application expects to load
resources such as JavaScript code. A web browser that im-
plements support for CSP can enforce the security policy
declared by the web application.

A newly developed web application can leverage CSP to
avoid XSS by not using inline JavaScript and by specifying
that only scripts from a set of trusted sites are allowed to
execute on the client. Indeed, Google has required that all
Chrome browser extensions implement CSP [1]. However,
manually applying CSP to a legacy web application typi-
cally requires a non-trivial amount of work [47]. The reason
is that the authors of the web application have to modify
the server-side code to clearly identify which resources (e.g.,
which JavaScript programs) are used by a web page. More-
over, these scripts have to be separated from the web page.

CSP essentially provides a mechanism for web browsers
to enforce the separation between code and data as speci-
fied by web applications. Our work solves the problem of
automatically transforming legacy web applications so that
the code and data in their web pages are separated. The
transformed web applications can then directly leverage the
browser’s support for CSP to avoid a wide range of XSS
vulnerabilities.

3. THREAT MODEL
Before discussing the design of deDacota, we need to

state our assumptions about the code that we are analyzing
and the vulnerabilities we are addressing.

Our approach involves rewriting a web application. This
web application is written by a benign developer—that is,
the developer has not intentionally obfuscated the code as a
malicious developer might. This assumption also means that
the JavaScript and HTML are benign and not intentionally
taking advantage of browser parsing quirks (as described in
Blueprint [28]).

deDacota will only prevent server-side XSS vulnerabil-
ities. We define server-side XSS vulnerabilities as XSS vul-
nerabilities where the root cause of the vulnerability is in

server-side code. Specifically, this means XSS vulnerabili-
ties where unsanitized input is used in an HTML page. We
explicitly do not protect against client-side XSS vulnerabil-
ities, also called DOM-based XSS. Client-side XSS vulner-
abilities occur when untrusted input is interpreted as Java-
Script by the client-side JavaScript code using methods such
as eval, document.write, or innerHTML. The root cause of
these vulnerabilities is in the JavaScript code.

In this paper, we focus solely on separating inline Java-
Script code (that is, JavaScript in between <script> and
</script>). While there are other vectors where JavaScript
can be executed, such as JavaScript code in HTML at-
tributes (event handlers such as onclick) and inline Cascad-
ing Style Sheet (CSS) styles [16], the techniques described
here can be extended to approximate and rewrite the HTML
attributes and inline CSS.

Unfortunately, code and data separation in an HTML
page is not a panacea for XSS vulnerabilities. In modern
web applications, the inline JavaScript code is sometimes
dynamically generated by the server-side code. A common
scenario is to use the dynamic JavaScript code to pass data
from the server-side code to the client-side code. There may
be XSS vulnerabilities, even if code and data are properly
separated, if the data embedded in the JavaScript code is not
properly sanitized. deDacota provides a partial solution to
the problem of dynamic JavaScript (see Section 4.5).

4. DESIGN
Our goal is to statically transform a given web application

so that the new version preserves the application semantics
but outputs web pages where all the inline JavaScript code
is moved to external JavaScript files. These external files
will be the only JavaScript that the browser will execute,
based on a Content Security Policy.

There are three high-level steps to our approach. For each
web page in the web application: (1) we statically determine
a conservative approximation of the page’s HTML output,
(2) we extract all inline JavaScript from the approximated
HTML output, and (3) we rewrite the application so that
all inline JavaScript is moved to external files.

Hereinafter, we define a running example that we use to
describe how deDacota automatically transforms a web ap-
plication, according to the three steps outlined previously.

4.1 Example
Listing 1 shows a simplified ASP.NET Web Form page.

Note that everything not in between the <% and %> is output
directly to the browser. Everything between matching <%

and %> is C# code. A subtle but important point is that
<%= is used to indicate that the C# code will output a string
at that location in the HTML output.

In Listing 1, Line 2 sets the title of the page, and Line 3
sets the Username variable to the name parameter sent in the
query string. The Username is output to the browser inside
a JavaScript string on Line 7. This is an example of the C#
server-side code passing information to the JavaScript client-
side code, as the intent here is for the JavaScript username

variable to have the same value as the C# Username variable.
Internally, ASP.NET compiles the ASP.NET Web Form

page to C#, either when the application is deployed, or on-
demand, as the page is accessed. The relevant compiled
C# output of Listing 1 is shown in Listing 2. Here, the
ASP.NET Web Form page has been transformed into an



1 <html >
2 <% Title = "Example ";
3 Username = Request.Params ["name "]; %>
4 <head ><tile ><%= Title %></title ></head >
5 <body >
6 <script >
7 var username = "<%= Username %>";
8 </script >
9 </body >

10 </html >

Listing 1: Example of a simple ASP.NET Web Form
page.

1 void Render(TextWriter w) {
2 w.Write("<html >\n ");
3 this.Title = "Example";
4 this.Username = Request.Params["name"];
5 w.Write("\n <head ><tile >");
6 w.Write(this.Title);
7 w.Write("</title ></head >\n <body >\n

<script >\n var username = \"");
8 w.Write(this.Username);
9 w.Write("\";\n </script >\n </body >\n

</html >");
10 }

Listing 2: The compiled C# output of Listing 1.

equivalent C# program. The ASP.NET compiler creates a
class (not shown) that represents the ASP.NET Web Form.
A method of the class is given a TextWriter object as a pa-
rameter. Anything written to this object will be sent in the
HTTP response. TextWriter.Write is a method call equiv-
alent of writing to the console in a traditional command-line
application.

From comparing Listing 1 to Listing 2, one can see that
output not between <% and %> tags is written to the Text-

Writer object. The code between the <% and %> tags is
inlined into the function (Lines 3 and 4), and the code that
is between the <%= and %> tags is written to the TextWriter

object (Lines 6 and 8). We also note that TextWriter.Write
is one of a set of methods used to write content to the HTTP
response. However, for simplicity, in the remainder of this
paper, we will use TextWriter.Write to represent all possi-
ble ways of writing content to the HTTP response.

4.2 Approximating HTML Output
In the first phase of our approach, we approximate the

HTML output of a web page. This is a two-step process.
First, we need to determine, at every TextWriter.Write lo-
cation, what is being written. Second, we need to determine
the order of the TextWriter.Write function invocations.

We use a different static analysis technique to answer each
of the two questions. To determine what is being written
at a TextWriter.Write, we use the points-to analysis algo-
rithm presented in [10] modified to work on .NET byte-code,
instead of C. This points-to analysis algorithm is inclusion-
based, demand-driven, context-sensitive, field-sensitive, and
partially flow-sensitive. The points-to analysis algorithm
computes the set of strings that alias with the parameter of
TextWriter.Write. If all strings in the alias set are constant
strings, the output at the TextWriter.Write will be defined

〈<html>, Line 2〉

〈Example, Line 6〉

〈<head><tile>, Line 5〉

〈*, Line 8〉

〈</title></head><body><script>var username = ", Line 7〉

〈";</script></body></html>, Line 9〉

Figure 1: Approximation graph for the code in List-
ing 1 and Listing 2. The dotted node’s content is
not statically determinable.

as the conjunction of all possible constant strings. Other-
wise, we say the output is statically undecidable. To deter-
mine the ordering of all TextWriter.Write method calls, we
build a control-flow graph, using standard techniques, that
only contains the TextWriter.Write method calls.

We encode the information produced by the two static
analyses—the ordering of TextWriter.Write method calls
and their possible output—into a graph that we call an ap-
proximation graph. Figure 1 shows the approximation graph
for the code in Listing 1 and Listing 2. Each node in the
graph contains the location of the TextWriter.Write that
this node represents as well as the possible constant strings
that could be output at this TextWriter.Write location.
Content that cannot be determined statically is represented
by a wild card * (the dotted node in Figure 1). The strings
that may be output at the TextWriter.Write will be used
to identify inline JavaScript, and the location of the Text-

Writer.Write will be used for rewriting the application.
In Figure 2 we show the approximation graph of a more

complex page. The graph in Figure 2 contains a branch,
where each node in the branch maps to the same Text-

Writer.Write method. This happens when the points-to
analysis says that the TextWriter.Write method can out-
put one of multiple strings. The other way there can be a
branch in the approximation graph is when there is a branch
in the control flow of the web application. The graph in Fig-
ure 2 also contains a loop that includes the nodes shown in
bold. However, because we cannot statically determine the
number of times a loop may execute, and we want our anal-
ysis to be conservative, we collapse all nodes of a loop (in
the approximation graph) into a single node. This new node
now has undecidable content (represented by a *). The new
node also keeps track of all the TextWriter.Write methods
that were part of the original loop.



〈<script>, Line 20〉

〈setupGuest();, Line 30〉〈setupAdmin();, Line 30〉

〈*, Line 50〉

〈var test = ", Line 40〉

〈</script>, Line 70〉

〈";, Line 60〉

Figure 2: Approximation graph with branches and
a loop. The loop will be collapsed into one node to
create the final approximation graph.

After collapsing all loops in the graph, we derive a conser-
vative approximation of the HTML output of a web page.
The approximation graph is a directed acyclic graph (DAG),
and any path from the root node to a leaf node will represent
one possible output of the web page.

4.3 Extracting Inline JavaScript
In the second phase, our approach uses the approxima-

tion graph described previously to extract all possible inline
JavaScript. The output of this phase is a set containing all
possible inline JavaScript that may appear in the web page.

In an approximation graph, each unique path from the
root node to a leaf node represents a potential output of the
page. A näıve algorithm would enumerate all paths and,
thus, all outputs, and parse each output string to identify
inline JavaScript. However, even without loops, the number
of unique paths even in a simple web page may quickly ex-
plode and become unmanageable (this is the path-explosion
problem faced in static analysis).

To reduce the impact of the path explosion problem, we
extract the inline JavaScript directly from the approxima-
tion graph. We first search for the opening and closing tags
of HTML elements in the graph. We ignore tags that appear
in comments. Then, for each pair of JavaScript tags (i.e.,
<script> and </script>), we process all the unique paths
between the opening and closing tags. For each path, we
obtain an inline JavaScript that the program might output.

While our current prototype is relatively simplistic in pars-
ing the starting and ending JavaScript files, it could be pos-
sible to use the parsing engine from a real browser. However,
this is not as straight-forward as it seems, as our input is a
graph of all potential HTML output, not a single document.
We leave this approach to future work.

All identified inline JavaScript pieces are then passed to
the last phase of our approach, which decides how to rewrite
the application.

4.4 Application Rewriting
The goal of the third phase is to rewrite the application

so that all identified inline JavaScript will be removed from
the HTML content and saved in external JavaScript files.
In the HTML code, an inline JavaScript is replaced with a
reference to the external JavaScript file as follows:
<script src="External.js"></script>

It is not uncommon that multiple possible inline Java-
Script snippets exist between an opening and closing Java-
Script tag because there may be branches between the tags
in the approximation graph. To know which exact inline
JavaScript is created, we need to track the execution of the
server-side code.

The inline JavaScript identified in the previous phase falls
into two categories: static and dynamic (i.e., contains un-
decidable content). Because we cannot statically decide the
content of a dynamic inline JavaScript, we must track the
execution of the server-side code to create its external Java-
Script file(s) at runtime. Therefore, we can avoid tracking
the execution of the server-side code only for the case in
which there is a single, static inline JavaScript code.

For a pair of opening and closing script tags that require
tracking the execution of the server-side code, we rewrite
the application as follows. At the TextWriter.Write that
may output the opening script tag, we first check if the out-
put string contains the tag. We need to perform this check
because a TextWriter.Write site may be used to output ei-
ther inline JavaScript code or other HTML. If we find the
opening script tag in the output, we use a session flag to
indicate that an inline JavaScript rewriting has started. We
write out everything before the start of the opening script
tag. We remove the opening script tag itself. The remaining
content is stored into a session buffer. Note that both session
flag and buffer are unique to each opening script tag. Then,
for all subsequent TextWriter.Write method calls that are
part of the inline JavaScript we are rewriting, except for the
last (that writes the closing tag), we append their output
to the session buffer if the session flag is on. For the last
TextWriter.Write method call (i.e., the one that writes the
closing script tag), any string content that occurs before the
closing script tag is appended to the session buffer. Any
content after the closing script tag is just written to the
output. At this point, the session buffer contains the entire
inline JavaScript code. We save this code to an external file
and add a TextWriter.Write method call that outputs the
reference to this JavaScript file.

To support JavaScript caching on the client side, the name
of the JavaScript file is derived from its content, using a
cryptographic hash of the JavaScript content. An unin-
tended benefit of this approach is that inline JavaScript that
is included on multiple pages will be cached by the browser,
improving application performance by reducing the size of
the page and saving server requests.

Listing 3 shows the result of applying this rewriting pro-
cess to the inline JavaScript code in Listing 2. The changes
shown are only those made to Lines 7–9 in Listing 2.

4.5 Dynamic Inline JavaScript
At this point in our analysis, we have successfully sepa-

rated the JavaScript code from the HTML data in the web
application. If the web application’s JavaScript is static,
and by static we mean statically decidable, then the appli-
cation is now immune to XSS vulnerabilities. However, if



1 w.Write("</title ></head >\n <body >\n ");
2
3 Session["7"] = "\n var username = \"");
4 Session["7"] += this.Username;
5 Session["7"] += "\";\n ";
6
7 var hashName = Hash(Session["7"]) + ".js";
8 WriteToFile(hashName , Session["7"]);
9

10 w.Write("<script src=\"" + hashName + "
\"></script >");

11
12 w.Write("\n </body >\n</html >");

Listing 3: The result of the rewriting algorithm
applied to Listing 2. Specifically, here we show the
transformation of Lines 7–9 in Listing 2.

the web application dynamically generates JavaScript with
undecidable content, and that content is not properly sani-
tized inside the JavaScript code, an attacker can exploit this
bug to inject a malicious script. The approach discussed so
far does not mitigate this attack, because it simply moves
the vulnerable JavaScript to an external file.

To understand how dynamic JavaScript can result in a
vulnerability, consider our example application in Listing 2.
There is an XSS vulnerability on Line 8 because the User-

name variable is derived from the name parameter and output
directly to the user, without sanitization. An attacker could
exploit this vulnerability by setting the name parameter to
";alert(’xss’)//. This would cause the resulting inline
JavaScript to be the following, thus executing the attacker’s
JavaScript code:
<script>

var username = "";alert(’xss’)//";

</script>

Therefore, the code section of the application is dynami-
cally generated with untrusted input and even with the code
and data separated, there is still an XSS vulnerability.

We attempt to mitigate this problem, and therefore im-
prove the security of the application, in two ways. First, we
identify cases in which we can safely rewrite the application.
Second, we notify the developer when we make an inline to
external transformation that is potentially unsafe.

For the first case, when the undetermined output is pro-
duced in certain JavaScript contexts, we can include it in a
safe fashion via sanitization. Specifically, during static anal-
ysis we pass the dynamic inline JavaScript to a JavaScript
parser. Then, we query the parser to determine the con-
texts in which the undetermined output (i.e., the * parts)
is used. Here, for context we are referring specifically to
the HTML parsing contexts described by Samuel et al. [38].
Possible contexts are JavaScript string, JavaScript numeric,
JavaScript regular expression, JavaScript variable, etc. If
an undetermined output is in a string context, we sanitize
them in a way similar to how Blueprint [28] handles string
literals in JavaScript.

Like Blueprint, on the server side we encode the string
value and store the encoded data in JavaScript by embed-
ding a call to a decoding function. Then when the Java-
Script is executed on the client side, the decoding function
will decode the encoded data and return the string. Unlike
Blueprint, we do not require any developer annotations

because our static analysis can automatically identify which
JavaScript context an undetermined output is in.

4.6 Generality
While the description of our approach so far was specific

to ASP.NET Web Forms, the high-level idea of automati-
cally separating code and data in a legacy web application
can be generalized to any other web application frameworks
or templating languages. There are still challenges that re-
main to apply our approach to another language, or even
another template in the same language. The two main steps
of our approach that must be changed to accommodate a
different language or templating language are: (1) under-
stand how the output is created by the web application and
(2) understand how to rewrite the web application. Only
the first step affects the analysis capability (as the rewriting
process is fairly straightforward).

To automatically separate the code and data of a differ-
ent language or templating language, one must understand
how the language or template generates its output. After
that, one would need to implement a static analysis that
can create an approximation graph. For instance, in the de-
fault Ruby on Rails template, ERB, variables are passed to
the template either via a hash table or class instance vari-
ables [37]. Therefore, one could approximate the output of
an ERB template by statically tracking the variables added
to the hash table and class instance variables (using points-
to analysis). Once an approximation graph is created, de-
tecting inline JavaScript can be performed in the manner
previously described.

The main factor to affect the success of applying our ap-
proach to another web application framework or templating
language is the precision of the static analysis, or in other
words, how precise and detailed the approximation graph
would be. The more dynamicism in the language or frame-
work, such as run-time code execution and dynamic method
invocation, the more difficult the analysis will be. Simply,
the more of the control-flow graph that we are able to de-
termine statically, the better our analysis will be. As an
example the default templating language in Django only al-
lows a subset of computation: iterating over a collection
instead of arbitrary loops [12]. This restriction could make
the analysis easier and therefore the approximation graph
more precise.

5. IMPLEMENTATION
We implemented the automated code and data separa-

tion approach described in Section 4 in a prototype called
deDacota. This prototype targets ASP.NET Web Forms
applications. ASP.NET is a widely used technology; of the
Quantcase top million websites on the Internet, 21.24% use
ASP.NET [8].

deDacota targets binary .NET applications. More pre-
cisely, it takes as input ASP.NET Web Forms binary web
applications, performs the three steps of our approach, and
outputs an ASP.NET binary that has all inline JavaScript
code converted into external JavaScript files. We operate
at the binary level because we must be able to analyze the
ASP.NET system libraries, which are only available in bi-
nary form.

We leverage the open-source Common Compiler Infras-
tructure (CCI) [32] for reading and analyzing the .NET
Common Language Runtime byte-code. CCI also has mod-



ules to extract basic blocks and to transform the code into
single static assignment (SSA) form. We also use CCI to
rewrite the .NET binaries.

For the static analysis engine, we leverage the points-to
analysis engine of KOP (also known as MAS) [10]. KOP was
originally written for the C programming language. There-
fore, we wrote (using CCI) a frontend that processes .NET
binaries and outputs the appropriate KOP points-to rules.
Then, after parsing these rules, the static analysis engine can
provide either alias analysis or points-to analysis. The KOP
points-to analysis is demand-driven, context-sensitive, field-
sensitive, and, because of the CCI single static assignment,
partially flow-sensitive.

An important point, in terms of scalability, is the demand-
driven ability of the static analysis engine. Specifically, we
will only explore those parts of the program graph that are
relevant to our analysis, in contrast to traditional data-flow
techniques which track data dependencies across the entire
program. The demand-driven nature of the static analysis
engine offers another scalability improvement, which is par-
allelism. Each analysis query is independent and, therefore,
can be run in parallel.

We also extend the KOP points-to analysis system to
model string concatenation. We do this by including spe-
cial edges in the program graph that indicate that a vari-
able is the result of the concatenation of two other vari-
ables. When computing the alias set of a variable, we first
do so in the original way (ignoring any concatenation edges).
Then, for each variable in the alias set that has concatena-
tion edges, we compute the alias set for each of the two
variables involved in the concatenation operation. We con-
catenate strings in the two alias sets and add them to the
original alias set. The undecidable variables are tracked,
so that their concatenated result contains a wildcard. This
process is recursive, and handles arbitrary levels of concate-
nation.

ASP.NET uses the idea of reusable components, called
Controls. The idea is that a developer can write a con-
trol once and then include it in other pages, and even other
controls. This relationship of including one control inside
another creates a parent-child relationship between the con-
trols (the parent being the control that contains the child
control).

In an ASP.NET Web Form page, child controls are first
added to the parent’s ChildControls collection, which is
similar to an array. Then, during rendering, a parent ren-
ders its child controls either by iterating over the ChildCon-

trols or by referencing a child control based on its index
in the ChildControls. Because the KOP points-to analysis
does not model the array relation, we cannot precisely de-
cide which child Control is being selected during rendering.
To handle this problem, we need to track the parent-child
relationships directly.

These parent-child relationships form a tree. Figure 3
shows the parent-child relationship of some of the user con-
trols of default.aspx in the application BlogEngine.NET
(one of the programs used in our evaluation). When build-
ing the control graph, we must statically recreate this tree.

To create this relationship statically, we take an approach
similar to approximating the HTML output. The entry func-
tion for an ASP.NET page is FrameworkInitialize, which is
similar to the main function for a C program. Starting from
this method, we create a control-flow graph of all the calls

to AddParsedSubObject, which is the function that adds a
child control to a parent. This gives us the order of the
AddParsedSubObject calls. At each of the calls, we use the
points-to analysis to find which control is the parent and
which is the child. This information, along with the order of
the calls to AddParsedSubObject, allows us to recreate the
parent-child control tree.

6. EVALUATION
There are three properties that we must look at to eval-

uate the effectiveness of deDacota. First, do we prevent
XSS vulnerabilities in the data section of the application by
applying code and data separation? Second, do we correctly
separate the code and data of the application—that is, does
the rewriting preserve the application’s semantics? Third,
what is the impact on the application’s performance? To
evaluate the security of our approach, we look at ASP.NET
applications with known vulnerabilities. To evaluate the cor-
rectness of our rewriting procedure, we apply our approach
to applications that have developer-created integration tests.
Then, we carried out performance measurements to answer
the third question. Finally, we discuss the relation between
separating code and data in the output and sanitizing the
input.

6.1 Applications
We wish to evaluate deDacota on ASP.NET web ap-

plications that are real-world, are open-source, and contain
known vulnerabilities. Real-world applications are impor-
tant for showing that our approach works on real-world code,
open-source is important for other researchers to replicate
our results, and known-vulnerable is important because we
aim to automatically prevent these known vulnerabilities.

Unfortunately, there is no standard (or semi-standard)
ASP.NET web application benchmark that meets all three
requirements. Furthermore, finding these application proved
to be a challenge. Compared to other languages such as
PHP, there are fewer open-source ASP.NET applications (as
most ASP.NET applications tend to be proprietary). There-
fore, here we present a benchmark of six real-world, open-
source, ASP.NET applications, four of which are known-
vulnerable, one of which is intentionally vulnerable for edu-
cation, and one of which has a large developer-created test
suite.

Table 1 contains, for each application, the version of the
application used in our evaluation, the CVE number of the
vulnerability reported for the application, the number of
ASP.NET Web Form pages, and the number of developer-
written ASP.NET Controls. To provide an idea of the size
of the applications, we also show the number of lines of code
(LOC) of the ASP.NET controls (Web Forms and Controls)
and C# code.

The web applications BugTracker.NET [7], BlogEngine-
.NET [5], BlogSA.NET [6], and ScrewTurn Wiki [41] all
contain an XSS vulnerability as defined in the associated
CVE.

WebGoat.NET [17] is an open-source ASP.NET applica-
tion that is intentionally vulnerable. The purpose is to pro-
vide a safe platform for interested parties to learn about web
security. Among the vulnerabilities present in the applica-
tion are two XSS vulnerabilities.

ChronoZoom Beta 3 [9], is an open-source HTML5 “in-
teractive timeline for all of history.” Parts are written in
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Figure 3: Control parent-child relationship between some of the controls in default.aspx from the application
BlogEngine.NET. The siblings are ordered from left to right in first-added to last-added order.

Application Version Known Vulnerability # Web Forms # Controls ASP.NET LOC C# LOC Total LOC
BugTracker.NET 3.4.4 CVE-2010-3266 115 0 27,257 8,417 35,674
BlogEngine.NET 1.3 CVE-2008-6476 19 11 2,525 26,987 29,512
BlogSA.NET 1.0 Beta 3 CVE-2009-0814 29 26 2,632 4,362 6,994
ScrewTurn Wiki 2.0.29 CVE-2008-3483 30 4 2,951 9,204 12,155
WebGoat.NET e9603b9d5f 2 Intentional 67 0 1,644 10,349 11,993
ChronoZoom Beta 3 N/A 15 0 3,125 18,136 21,261

Table 1: ASP.NET Web Form applications that we ran deDacota on to test its applicability to real-world
web applications.

ASP.NET Web Forms, but the main application is a Java-
Script-heavy HTML page. We use ChronoZoom because,
unlike the other applications, it has an extensive test suite
that exercises the JavaScript portion of the application. To
evaluate the correctness of our rewriting, we converted the
main HTML page of ChronoZoom, which contained inline
JavaScript, into an ASP.NET Web Form page, along with
nine other HTML pages that were used by the test suite.

These six real-world web applications encompass the spec-
trum of web application functionality that we expect to en-
counter. These applications constitute a total of 100,000
lines of code, written by different developers, each with a
different coding style. Some had inline JavaScript in the
ASP.NET page, some created inline JavaScript in C# di-
rectly, while others created inline JavaScript in C# using
string concatenation. Furthermore, while analyzing each ap-
plication we also analyzed the entire .NET framework (which
includes ASP.NET); all 256 MB of binary code. As our anal-
ysis handles ASP.NET, we are confident that our approach
can be applied to the majority of ASP.NET applications.

6.2 Security
We ran deDacota on each of our test applications. Ta-

ble 2 shows the total number of inline JS scripts per ap-
plication and a breakdown of the number of static inline JS
scripts, the number of safe dynamic inline JS scripts, and the
number of unsafe dynamic inline JS scripts. There were four
dynamic inline JS scripts created by the ASP.NET frame-
work, and these are represented in Table 2 in parentheses.
We chose to exclude these four from the total dynamic in-
line JS scripts because they are not under the developer’s
control, and, furthermore, they can and should be addressed
by changes to the ASP.NET library. Furthermore, it is im-
portant to note that our tool found these dynamic inline JS
scripts within the ASP.NET framework automatically.

From our results it is clear that modern web applications
frequently use inline JS scripts. The applications used a
range of five to 46 total inline JS scripts. Of these total
inline JS scripts 22% to 100% of the inline JS scripts were
static.

deDacota was able to safely transform, using the tech-
nique outlined in Section 4.5, 50% to 70% of the dynamic
inline JS scripts. This result means that our mitigation tech-
nique worked in the majority of the cases, with only zero to
four actual unsafe dynamic inline JS scripts per application.

We looked for false negatives (inline JavaScript that we
might have missed) in two ways. We manually browsed to
every ASP.NET Web Form in the application and looked for
inline JavaScript. We also searched for inline JavaScript in
the original source code of the application to reveal possible
scripts the previous browsing might have missed. We did
not find any false negatives in the applications.

To evaluate the security improvements for those applica-
tions that had known vulnerabilities, we manually crafted
inputs to exploit these know bugs. After verifying that the
exploits worked on the original version of the application, we
launched them against the rewritten versions (with the Con-
tent Security Policy header activated, and with a browser
supporting CSP). As expected, the Content Security Pol-
icy in the browser, along with our rewritten applications,
successfully blocked all exploits.

6.3 Functional Correctness
To evaluate the correctness of our approach, and to verify

that we maintained the semantics of the original applica-
tion, we used two approaches. First, we manually browsed
web pages generated by each rewritten application and in-
teracted with the web site similar to a normal user. During
this process, we looked for JavaScript errors, unexpected be-
haviors, or CSP violations. We did not find any problems or
deviations. Second, and more systematically, we leveraged



Application Total JS Static Safe
Dynamic

Unsafe
Dynamic

BugTracker.NET 46 41 3 2 (4)
BlogEngine.NET 18 4 10 4 (4)
BlogSA.NET 12 10 1 1 (4)
ScrewTurn Wiki 35 27 4 4 (4)
WebGoat.NET 6 6 0 0 (4)
ChronoZoom 5 5 0 0 (4)

Table 2: Results of running deDacota against the
ASP.NET Web Form applications. Safe Dynamic
is the number of dynamic inline JS scripts that we
could safely transform, and Unsafe Dynamic is the
number of dynamic inline JS scripts that we could
not safely transform.

Application Page Size Loading Time
ChronoZoom (original) 50,827 0.65
ChronoZoom (transformed) 20,784 0.63
BlogEngine.NET (original) 18,518 0.15
BlogEngine.NET (transformed) 19,269 0.16

Table 3: Performance measurements for two of the
tested applications, ChronoZoom. Page Size is the
size (in bytes) of the main HTML page rendered
by the browser, and Loading Time is the time (in
seconds) that the browser took to load and display
the page.

the developer-written testing suite in ChronoZoom. Before
we applied our rewriting, the original application passed 160
tests. After rewriting, all 160 tests executed without errors.

6.4 Performance
To assess the impact of deDacota on application perfor-

mance, we ran browser-based tests on original and trans-
formed versions of two of the tested applications. Our per-
formance metric was page-loading time in Internet Explorer
9.0, mainly to determine the impact of moving inline Java-
Script into separate files. The web server was a 3 GB Hyper-
V virtual machine running Microsoft IIS 7.0 under Windows
Server 2008 R2, while the client was a similar VM running
Windows 7. The physical server was an 8 GB, 3.16 GHz
dual-core machine running Windows Server 2008 R2.

Table 3 shows test results for two web applications, sum-
marizing performance data from page-loading tests on the
client. The table columns list the average sizes of the main
HTML pages retrieved by the browser by accessing the main
application URLs, along with the average time used by the
browser to retrieve and render the pages in their entirety.
All the numbers were averaged over 20 requests.

As Table 3 indicates, deDacota’s transformations in-
curred no appreciable difference in page-loading times. Be-
cause the original ChronoZoom page contained a significant
amount of script code, the transformed page is less than half
of the original size. On the other hand, the BlogEngine.NET
page is slightly larger because of its small amount of script
code, which was replaced by longer links to script files. The
page-loading times mirror the page sizes, also indicating that
server-side processing incurred no discernible performance
impact.

6.5 Discussion
The results of our rewriting shed light on the nature of

inline JavaScript in web applications. Of the four applica-
tions that have dynamic JavaScript, 12.2% to 77.8% of the

total inline JavaScript in the application is dynamic. This is
important, because one of BEEP’s XSS prevention policies
is a whitelist containing the SHA1 hash of allowed Java-
Script [20]. Unfortunately, in the modern web JavaScript is
not static and frequently includes dynamic elements, necessi-
tating new approaches that can handle dynamic JavaScript.

The other security policy presented in BEEP is DOM
sandboxing. This approach requires the developer to man-
ually annotate the sinks so that they can be neutralized.
Blueprint [28] works similarly, requiring the developer to
annotate the outputs of untrusted data. Both approaches
require the developer to manually annotate the sinks in the
application in order to specify the trusted JavaScript. To
understand the developer effort required to manually anno-
tate the sinks in the application, we counted the sinks (i.e.,
TextWriter.Write call sites) inside the 29 Web Forms of
BlogSA.NET and there were 407. In order to implement
either BEEP or Blueprint a developer must manually an-
alyze all sinks in the application and annotate any that could
create untrusted output.

Unlike BEEP and Blueprint, deDacota is completely
automatic and does not require any developer annotations.
deDacota cannot prevent XSS vulnerabilities in dynamic
inline JavaScript completely. If a developer wishes to pre-
vent all XSS vulnerabilities after applying deDacota, they
would only need to examine the sinks that occur within the
unsafe dynamic inline JavaScript. In BlogSA.NET, there
are three sinks within the single unsafe dynamic JavaScript.
One could further reduce the number of sinks by using taint
analysis to check if untrusted input can reach a sink in the
dynamic JavaScript.

7. LIMITATIONS
The goal of deDacota is to automatically separate the

JavaScript code from the HTML data in the web pages of a
web application using static analysis. We have shown that
deDacota is effective with real-world web applications. In
this section, we discuss its limitations in general.

The programming language of .NET has the following dy-
namic language features: dynamic assembly loading, dy-
namic compilation, dynamic run-time method calling (via
reflection), and threading. The use of these features may
compromise the soundness of any static analysis including
ours in deDacota. However, these language features are
rarely used in ASP.NET web applications in practice. For
instance, those applications we tested did not use any of
these features. Furthermore, deDacota is affected only if
the use of these features determines the HTML output of an
application.

On one hand, we handle loops conservatively by approx-
imating that a loop can produce anything. On the other
hand, we treat the output of a loop as a * in the approxi-
mation graph and assume it does not affect the structure of
the approximation graph in a way that impacts our analysis.
For instance, we assume the output of a loop does not con-
tain the opening or closing script tag. Our analysis will be
incorrect if this assumption is violated. While we found that
this assumption holds for all the web applications we tested,
it is possible that this assumption will not hold for other
programs, thus requiring a different approach to handling
loops.

We do not offer any formal proof of the correctness of
deDacota. While we believe that our approach is correct in



absence of the dynamic language features, we leave a formal
proof of this to future work.

deDacota currently supports the analysis of string con-
catenations. The support for more complex string opera-
tions such as regular expressions is left for future work. A
potential approach is to leverage an automata-based string
analysis engine [50].

Our approach to sanitizing dynamic JavaScript code may
not preserve an application’s semantics when the dynamic
content being sanitized as a string is meant to be used in
multiple JavaScript contexts.

When deploying deDacota in practice, we recommend
two practices to mitigate its limitations. First, all tests
for the original web application should be performed on
the rewritten binary to detect any disruptions to the ap-
plication’s semantics. Second, CSP’s “Report Only” mode
should be used during the testing and initial deployment.
Under this mode, the browser will report violations back to
the web server when unspecified JavaScript code is loaded.
This helps detect inline JavaScript code that is missed by
deDacota.

Finally, our prototype does not handle JavaScript code
in HTML attributes. We do not believe that there is any
fundamental limitation that makes discovering JavaScript
attributes more difficult than inline JavaScript. The only
minor difficulty here is in the rewriting. In order to sepa-
rate a JavaScript attribute into an external JavaScript, one
must be able to uniquely identify the DOM element that
the JavaScript attribute affects. To do this, it would re-
quire generating a unique identifier for the HTML element
associated with the JavaScript attribute.

8. RELATED WORK
A broad variety of approaches have been proposed to ad-

dress different types of XSS, though no standard taxonomy
exists to classify these attacks and defenses. In general, XSS
defenses employ schemes for input sanitization or restric-
tions on script generation and execution. Differences among
various techniques involve client- or server-side implementa-
tion and static or dynamic operation. We group and review
XSS defenses in this context.

8.1 Server-Side Methods
While CSP itself is enforced by browsers [42], our ap-

proach for leveraging CSP is a static, server-side XSS de-
fense. There has been much previous research in server-side
XSS defenses [3, 4, 13, 14, 22, 28, 34, 35, 38, 40, 43]. Server-
based techniques aim for dynamically generated pages free
of XSS vulnerabilities. This may involve validation or in-
jection of appropriate sanitizers for user input, analysis of
scripts to find XSS vulnerabilities, or automatic generation
of XSS-free scripts.

Server-side sanitizer defenses either check existing saniti-
zation for correctness or generate input encodings automat-
ically to match usage context. For example, Saner [3] uses
static analysis to track unsafe inputs from entry to usage,
followed by dynamic analysis to test input cases for proper
sanitization along these paths. ScriptGard [40] is a com-
plementary approach that assumes a set of “correct” sani-
tizers and inserts them to match the browser’s parsing con-
text. Bek [18] focuses on creating sanitization functions au-
tomatically analyzable for preciseness and correctness. Sani-

tization remains the main industry-standard defense against
XSS and related vulnerabilities.

A number of server-side defenses restrict scripts included
in server-generated pages. For example, XSS-GUARD [4]
determines valid scripts dynamically and disallows unex-
pected scripts. The authors report performance overheads
of up to 46% because of the dynamic evaluation of HTML
and JavaScript. Templating approaches [13,36,38] generate
correct-by-construction scripts that incorporate correct san-
itization based on context. In addition, schemes based on
code isolation [1,2,26] mitigate XSS by limiting DOM access
for particular scripts, depending on their context.

Certain XSS defenses [21, 22, 27, 29, 34, 35, 39, 44, 49] use
data-flow analysis or taint tracking to identify unsanitized
user input included in a generated web page. These ap-
proaches typically rely on sanitization, encoding, and other
means of separating unsafe inputs from the script code.
Some schemes prevent XSS bugs dynamically, while others
focus on static detection and elimination.

Other approaches [14,28,33] combine server-side process-
ing with various client-side components, such as confine-
ment of untrusted inputs and markup randomization. Such
schemes may parse documents on the server and prevent
any modifications of the resulting parse trees on the client.
In addition, randomization of XHTML tags can render for-
eign script code meaningless, defeating many code-injection
attacks.

8.2 Client-Side Methods
Client-side XSS defenses [20,23,30,42,45,47] mitigate XSS

while receiving or rendering untrusted web content. Some
of these schemes rely on browser modifications or plug-ins,
often reducing their practical applicability. Others use cus-
tom JavaScript libraries or additional client-side monitoring
software. CSP itself [42] is a browser-based approach, but its
incorporation into WWW standards should facilitate wide
acceptance and support by all popular browsers.

Some client-side XSS defenses focus on detecting and pre-
venting leakage of sensitive data. For example, Noxes [23]
operates as a personal-firewall plug-in that extracts all static
links from incoming web pages, prompting the user about
disclosure of information via dynamically generated links.
Vogt et al. [45] also aim to address this problem, but use
taint-tracking analysis within a browser to check for sensi-
tive data released via XSS attacks. In contrast, deDacota
simply prevents any XSS exploits that could enable such
leakage.

Client-side HTML security policies mitigate XSS via con-
tent restrictions, such as disallowing unsafe features or exe-
cuting only “known good” scripts. Using a browser’s HTML
parser, BEEP [20] constructs whitelists of scripts, much like
XSS-GUARD’s server-side approach [4]. BEEP assumes no
dynamic scripts whose hashes cannot be pre-computed, lim-
iting its practicality with modern web applications; more-
over, it has been shown that even whitelisted scripts may
be vulnerable to attacks [2]. Another custom content se-
curity policy is Blueprint’s page descriptions, which are
interpreted and rendered safely by a custom JavaScript li-
brary [28]. Script policies enforced at runtime [15, 30] are
also useful for mitigating XSS exploits.

In general, standardized HTML security policies [42, 47]
offer promise as a means of escaping the recent proliferation
of complex, often ad hoc XSS defenses. CSP simplifies the



problem by enforcing fairly strong restrictions, such as dis-
abling eval() and other dangerous APIs, prohibiting inline
JavaScript, and allowing only local script resources to be
loaded. While new web applications can be designed with
CSP in mind, legacy code may require significant rewrit-
ing. deDacota works on both old and new applications,
facilitating adoption of CSP by developers, primarily by au-
tomating the separation process.

9. CONCLUSION
Cross-site scripting vulnerabilities are pervasive in web

applications. Malicious users frequently exploit these vul-
nerabilities to infect users with drive-by downloads or to
steal personal information.

While there is currently no silver bullet to preventing ev-
ery possible XSS attack vector, we believe that adhering to
the fundamental security principle of code and data separa-
tion is a promising approach to combating XSS vulnerabil-
ities. deDacota is a novel approach that gets us closer to
this goal, by using static analysis to automatically separate
the code and data of a web application. While not a final
solution, deDacota and other tools that automate making
web applications secure by construction are the next step in
the fight against XSS and other kinds of vulnerabilities.
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