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ABSTRACT

In this work, we propose SigMal, a fast and precise mal-
ware detection framework based on signal processing tech-
niques. SigMal is designed to operate with systems that pro-
cess large amounts of binary samples. It has been observed
that many samples received by such systems are variants
of previously-seen malware, and they retain some similarity
at the binary level. Previous systems used this notion of
malware similarity to detect new variants of previously-seen
malware. SigMal improves the state-of-the-art by leveraging
techniques borrowed from signal processing to extract noise-
resistant similarity signatures from the samples. SigMal uses
an efficient nearest-neighbor search technique, which is scal-
able to millions of samples. We evaluate SigMal on 1.2 mil-
lion recent samples, both packed and unpacked, observed
over a duration of three months. In addition, we also used a
constant dataset of known benign executables. Our results
show that SigMal can classify 50% of the recent incoming
samples with above 99% precision. We also show that Sig-
Mal could have detected, on average, 70 malware samples
per day before any antivirus vendor detected them.
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1. INTRODUCTION
The ever-increasing volume of new malware produced ev-

ery day is a challenging problem [16]. The analysis of such
a large quantity of new malware demands scalable analysis
techniques as well as efficient triage systems that can quickly
prioritize the incoming samples. There are three main ap-
proaches to malware analysis in practice: Static Analysis,
Dynamic Analysis, and Statistical Analysis. Static analysis
disassembles the code present in the executable without ex-
ecuting the program, and analyzes different static features
of the code, such as the control flow graph, in order to
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identify malicious behavior. Dynamic analysis runs the ex-
ecutable in a controlled environment, and then analyzes its
runtime behavior. In contrast, statistical analysis is agnostic
to the code semantics and the dynamic behavior of the bi-
nary executable. Instead, it operates directly on the binary
by computing different statistical features of the actual con-
tent without disassembly. These statistical features are then
used to identify malware, usually through machine learning
and classification. Compared to other malware analysis ap-
proaches, statistical analysis can be relatively fast and scal-
able. While static, dynamic, and statistical analyses all have
trade-offs and limitations, statistical analysis has a distinct
advantage in speed and complexity that makes it suitable for
the goal of this paper: a triage framework that can operate
on a large quantity of daily malware samples.
A large portion of the new malware samples introduced

every day is composed of new variants of already-observed
malware. Two malware samples are considered variants
if they exhibit similar malicious dynamic behavior when
executed. Malware variants usually share large portions
of the code, which is reflected in the machine-level code
present in the executable. This notion of binary-content-
level similarity among variants of malware can be used to
detect new variants of previously-seen malware. Different
file similarity-based malware detection techniques have been
proposed [10, 12, 19, 29, 32, 34, 35]. These techniques are
based on the assumption that similar malware share sim-
ilar code and file structures, and require uncompressed and
unencrypted malware code for effective detection. However,
easily-available polymorphic engines and generic packers are
the most prevalent techniques used for generating new mal-
ware variants. These tools obfuscate the variants of mal-
ware code by adding random modifications (noise), and pre-
vent the signature-based detection. It has been observed
that malware packers commonly use weak encryption and
compression algorithms, and such operations preserve cer-
tain statistical and structural properties at the binary level,
which can be used to detect similarity without unpacking [9].
Most of these similarity detection techniques, including [9],
are based on different versions of N-gram feature extraction.
The N-gram based operations are computationally expen-
sive, and usually not suitable in large triage systems. Some
of the techniques that only extract features from the exe-
cutable headers (PE structure) are fast, however, they are
less precise because they ignore the content-level similar-
ity of code. Moreover, the N-gram-based approaches are
focused on the matching-substrings, regardless of their posi-
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Figure 1: SigMal overview.

tion. They do not detect the similarity of the spatial struc-
ture. However, in case of the executable similarity, detecting
the similarity of the spatial structure of the content is very
important. This is because the executables are inherently
structured, almost a replica of its memory structure, which
includes the spatial structure of the machine-level code re-
siding in the code section. The content-hashing-based tech-
niques, such as peHash [35] and Piecewise-Hash [14], can
capture some level of structural characteristics of an exe-
cutable. However, they are susceptible to small noise in-
troduced into the executables. Specially, while detecting
similarity among malware executables, a robust similarity
detection method needs to be noise resistant because of the
random modifications introduced by polymorphic engines
and packers. In Image Processing, the image similarity de-
tection techniques deal with a very similar problem, i.e.,
finding similarity among spatially structured content, while
remaining less susceptible to noise. We apply similar tech-
niques to detect similarity among malware executables.
In this paper, we propose SigMal, a fast and precise sig-

nal processing-based malware similarity detection technique
suitable for a large-scale malware triage. SigMal features
are based on both the PE structure and the binary content
of the executable. Compared to existing similarity detec-
tion features, the signal processing-based features are less
susceptible to the random modifications (noise) introduced
by a polymorphic or metamorphic engine.
The binary content of the executable can be considered

as a one-dimensional signal. We first transform this one-
dimensional signal into a two-dimensional digital image, so
that we can computationally extract robust signatures from
this image. These signatures are then used for the malware
similarity detection. The intuition here is that similar mal-
ware produce similar image texture patterns. A texture is a
set of metrics representing the spatial arrangement of color
or intensities in an image, in our case it is the content of the
executable. The similarity features are extracted from these
texture-patterns. This approach of binary transformation
is similar to the malware visualization technique proposed
in [20], in which the one-dimensional signal of an entire bi-
nary is “reshaped” into a two-dimensional gray-scale image.
However, extracting the feature from the entire binary can
be problematic. If a malware reorders its internal sections,
the resulting features will be significantly different. In ad-
dition, only the section or the sections of the binary that
contain the malicious code are likely to be similar among
similar malware. Similarity in other sections, such as the re-
source section, does not necessarily imply similar malware.
We will see that this approach, as proposed in [20], per-
forms the worst when compare to existing static malware
detection techniques. Our method takes advantage of the
information available in the PE structure of the executable
to infer the “important” sections that are most likely to con-
tain the malicious code. From these sections, we compute
separate texture features for similarity detection. These fea-

tures are then combined to form a larger feature-set. This
approach considerably increases the dimensionality of the
feature, in our case by three times, which makes it challeng-
ing to make it work in a large-scale triage system. How-
ever, we use a scalable Balltree-based fast nearest-neighbor
technique, which can scale our malware similarity detection
method to millions of malware. In particular, SigMal’s fea-
ture extraction is based on the Gabor wavelets-based filters,
which are commonly used in the large-scale content-based
image retrieval systems. It has been shown that such sig-
nature features perform well in identifying similar images
in a web-scale dataset of natural images (110 million) [7].
We will show that these features are also effective in finding
similar malware samples in a large set of executable samples.
An overview of the system is presented in Fig. 1. SigMal

takes sets of known malware samples and known benign sam-
ples, extracts features and builds a classifier model. The sys-
tem performs per-sample analysis of new input executable
samples and identifies them as malware, benign, or unknown.
Our method is suitable in a setting where large numbers of
samples are received every day, and the samples need to be
quickly classified as either benign or malicious. This is in-
deed a common scenario in the computer security industry,
research organizations, and government institutions. Fast
static detection of similar malware can avoid repeated anal-
ysis, and save large amount of resources required to perform
more complex analysis, such as dynamic analysis. By di-
rectly operating on the packed binary, our technique avoids
the costly operation of preliminary unpacking.
We compared our approach with other static-feature-based

malware detection approaches, specifically N-gram-based de-
tection, PE-feature-based detection, and control-flow-graph-
based detection. We show that our method outperforms all
of these methods in terms of precision. In the 10-fold cross-
validation experiment on 103,808 samples, SigMal could
achieve average per-sample query response time of 47.95 mil-
liseconds and 99% detection precision. We also performed
a large-scale experiment on a dataset of 1.2 million samples
observed during the period of 3 months.
The main contributions of this paper are the following:

• We propose an efficient and scalable signal processing-
based malware similarity measure that can detect mal-
ware with high speed and precision.

• We evaluated its performance with respect to existing
static malware similarity approaches using a dataset of
51,058 malicious and 52,750 benign samples. We show
that our method outperformed all other methods in
terms of precision.

• We evaluated SigMal on 1.2 million recent samples,
both packed and unpacked, observed over three months.
We demonstrate that SigMal can classify 50% of the
incoming samples with more than 99% precision.

• We show that SigMal could have detected, on aver-
age, 70 malware samples per day before any antivirus
vendor detected them.

2. SIGNAL PROCESSING-BASED

FEATURES
In this section, we describe the signal processing-based

feature extraction. The executable binary content is taken
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as a one-dimensional signal, represented as a vector of bytes.
This vector is “reshaped” into a two-dimensional matrix of
fixed width d. In other words, the first d bytes go to the
first row of the matrix, and the nth group of d bytes goes
to the nth row of the matrix. This approach is similar to
the malware visualization technique proposed in [20]. The
two-dimensional matrix, after a necessary padding, is now
considered as a digital gray-scale image, which is “resized”
into a square image of width s for efficient computation.
Image-texture-based signature features are extracted from
this transformed image. The transformed image captures
the short-range correlations of the signal as the texture with
horizontal orientation, and the long-range correlations as the
texture with vertical orientation. This is because the hori-
zontally adjacent pixels in the image correspond to the ad-
jacent bytes in the binary (short-range), and the vertically
adjacent pixels correspond to the bytes spaced by a multi-
ple of width d in the binary (long-range). Instead of using a
variable width d, as proposed in [20], we use a fixed width
transformation to maintain the consistency in the texture
produced as a result of this transformation. As long as the
same width is used for each executable, the choice of the
width does not affect the similarity of the texture produced
among similar executables. Based on this similarity of the
textures, we would like to computationally obtain a signa-
ture that captures this similarity. This problem has been
widely explored and texture features have been extensively
used in the field of image processing for content-based im-
age retrieval [18], scene classification [21,33], and large-scale
image search [7]. Even though some sections of the image
look completely random to a human eye, texture features
can capture a signature of the randomness that is suitable
for similarity detection. The methodology for computing the
texture-based features is described in the next section.

2.1 Feature computation
We compute the features based on GIST descriptors [21].

The descriptors are computed by first filtering the image in
various frequency sub-bands and then computing local block
statistics on the filtered images.
Let I(x, y) be the image on which the descriptor is to be

computed. The GIST descriptor is computed by filtering
this image through a filter bank of Gabor filters [6]. These
filters are band-pass filters whose responses are Gaussian
functions modulated with a complex sinusoid. The filter
response t(x, y) and its Fourier transform T (u, v) are defined
as:

t(x, y) =
1

(2πσxσy)
exp[−1

2
(
x2

σx
2
+

y2

σy
2
) + 2πjWx] (1)

T (u, v) = exp[−1
2
(
(u−W )2

(σu)2
+

v2

(σv)2
)] (2)

where σu = 1/2πσx and σv = 1/2πσy. Here, σx and σy

are the standard deviations of the Gaussians function along
the x direction and y direction. These parameters deter-
mine the bandwidth of the filter and W is the modulation
frequency. (x, y) and (u, v) are the spatial and frequency
domain coordinates.

We create a filter bank by rotating (orientation) and scal-
ing (dilation) the basic filter response function t(x, y), re-
sulting in a set of k self-similar filters. In image processing

Malware
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Figure 2: Texture-based feature computation. The
malware image is first resized, then filtered, followed
by sub-block averaging to form the feature vector.

terminology, the functions modeling the filters are often re-
ferred to as Gabor Wavelets [6]. The image is then filtered
using this filter bank to produce k filtered images.
Each filtered image is further divided into B × B sub-

blocks and the average value of a sub-block is computed and
stored as a vector of length L = B2. This way, k vectors of
length L are computed per image. These vectors are then
concatenated to form a kL-dimensional feature vector called
GIST. In this paper, we used 20 self-similar filters derived
from different rotations (orientations) and scales. In partic-
ular, we used 3 scales, out of which the first two scales have
8 orientations and the last one has 4. We used B = 4 to
obtain a 320-dimensional feature vector. These parameters
have been previously used for image search [7]. While com-
puting the GIST descriptor, it is a common pre-processing
step to resize the image to a square image of dimensions
s×s [7]. In our experiments, we used the parameters d = 256
and s = 64 and observed that choosing different values of
d did not affect the results, while choosing a value of s less
than s = 64 decreased the accuracy. Larger value of s in-
creased the computational complexity, however, because of
the sub-block averaging, this did not effectively strengthen
the signature feature. In Fig. 2, we illustrate how a feature
vector is calculated by filtering the image with a single filter.
This process is repeated for all other filters in the filter bank,
and the feature vectors thus obtained are concatenated to
form the full GIST descriptor.

2.2 Section-aware feature extraction
A normal executable file structure consists of many sec-

tions, such as code or data. Apart from some special types
of malware executables, such as COM files, usually all mal-
ware executable files are also structured in this way. The
true malicious behavior of malware is represented by the
section containing the code, which executes the actual ma-
licious activities. The previously-proposed algorithm [20]
ignores this critical information and generates malware fin-
gerprints from the entire binary. This approach may cause
the code section similarity to be out-weighted by dissimilar-
ities of other sections, such as the resource section, and fail
to identify a variant. Generic packers and installers usually
share resources, such as icons and extraction routines. With
relatively small packed executables, these resource similari-
ties will produce false-positive similarity detection.
SigMal takes advantage of the internal structure of an ex-

ecutable. The texture properties of an executable section
depends on its content type. An executable can contain dif-
ferent types of contents such as code, packed and unpacked
data, and other resources, which produce corresponding dif-
ferent types of GIST filter responses. The texture feature
extracted from the entire binary captures the spatial struc-
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Data: PE Executable
Result: A list of important sections
Map sections into raw binary file;
if overlapping section exits then

resize section to make it contiguous with adjacent sections;
end
if .text executable section exists then

if is the largest section then
Result.append(.text section and the second largest
section);

else
if .text section is writable then

Result.append(two largest sections);
else

Result.append(.text section and the largest section);
end

end

else
if any non-writable executable section exists then

Result.append(this section and the largest section);
else

Result.append(two largest sections);
end

end

Algorithm 1: Finding important sections.

ture of these sections. To capture more localized signal infor-
mation from the important regions of the binary, we extract
separate GIST descriptors from each “important” section of
the executable. We say a section is an important section if it
is likely to contain the code (packed or unpacked) of the ex-
ecutable. These sections get more weight because the GIST
descriptors are computed on a per-section basis and con-
catenated to form the final feature set. To extract separate
GIST descriptors from the important sections of the binary,
we first need to identify them. One way to extract this in-
formation is to use the PE structure information. However,
especially in case of malware binaries, the mapping of sec-
tion information from the PE structure to the binary file
data is not always reliable. For example, code sections can
be compressed, relocated, or obfuscated, and their size can
be spuriously specified as an arbitrarily large value. We use
heuristics to find boundaries of the important sections of an
executable within the raw binary data, and select two impor-
tant sections using the heuristics presented in Algorithm 1.
These heuristics are loosely based on [9]. The section type,
section flags, and the size of the section are used in the
heuristics. For example, small writable executable sections
are usually common loader sections instead of actual mal-
ware code. The heuristics give less priority to such sections.
We also experimented with heuristics that prioritize the sec-
tion selection based on entropy instead of size. However, we
did not use this method because the results were slightly less
precise.

3. METHODOLOGY

3.1 Feature matching
We use the Euclidean distance metrics between feature

vectors to find the nearest-neighbor sample in the learning
dataset. For each unknown sample q, we perform a nearest-
neighbor query on the malicious and the benign datasets,
which returns two distances, say dm and db, respectively.
If both distances are very similar, we cannot say for sure
whether the sample q is malicious or benign. This confusion
is even more pronounced when dm and db themselves are
large (i.e., when the similarity to the dataset is weak). In
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Figure 3: Illustration of a Balltree: (a) A Binary
Tree (b) Corresponding Ball Tree representation.

order to model this nature of the distances, we introduce a
detection confidence parameter c as described in Eq. 3. We
mark the sample q as unknown if the value of c is less than
a certain threshold (i.e., the absolute difference of distances
dm and db is not large enough).

c =
|dm − db|√
d2m + d2b

(3)

Here, the value of detection confidence c varies from 0 to
1, such that the value of 0 implies no confidence (unknown),
and the value of 1 implies the highest confidence. In case
of a faulty training set, where the same sample is present
in the both malware and benign datasets, the value of c for
that sample will be undefined (dm = db = 0).

3.2 Fast nearest-neighbor
Because of the high dimensionality of the feature SigMal,

brute-force nearest-neighbor search is computationally ex-
pensive. For the efficient nearest-neighbor search in a high-
dimensional space, we use Balltree data structures [22]. A
Ball, in n-dimensional Euclidean space Rn, is defined as
a region bounded by a hyper sphere. It is represented as
B = {c, r}, where c is an n-dimensional vector specifying
the coordinates of the ball’s centroid, and r is the radius of
the ball. A balltree is a binary tree where each node is asso-
ciated with a ball. Each ball is a minimal ball that contains
all balls associated with its children nodes. The data is re-
cursively partitioned into nodes defined by the centroid and
the radius of the ball. Each point in the node lies within
this region. Fig. 3 shows an illustration of a binary tree,
and a balltree over four balls (1,2,3,4). Search is carried out
by finding the minimal ball that completely contains all its
children. This ball also overlaps the least with other balls
in the tree. For a dataset of M samples and dimensionality
N , the query time grows approximately as O(N log(M)) (as
opposed to O(NM) for a brute force search).

3.3 Comparison
We compared our signal processing-based malware simi-

larity algorithm with three popular malware detection meth-
ods.

3.3.1 N-gram based detection
The N-gram signature based approach has been exten-

sively used in the previous works of malware similarity [3,
10,29]. The N-gram signature of a string is a set of all sub-
strings of the string with a length n. In the case of a binary
executable, the N-gram signature is usually computed on
the string of its raw bytes, or disassembled instructions.
Various similarity measures have been proposed to com-

pare the similarity between N-gram signatures [3,10,29]. In
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our case, we used the Jaccard similarity metric, which has
been extensively used in previous work [4, 10, 25]. Jaccard
similarity is the number of common occurrence of N-grams
in both N-gram signatures with respect to the total num-
ber of unique N-grams. More precisely, given two N-gram
signatures (sets of N-grams) sa and sb:

J(sa, sb) =
sa ∩ sb
sa ∪ sb

.

3.3.2 PE structure-based detection
Several PE structure-based malware detection techniques

have been proposed [30, 31, 35]. They are mainly based on
the structural features of executables, which are directly ex-
tracted from the PE file structure with low computational
overhead. In a recent work, only seven PE-based features
were used to produce detection results comparable to meth-
ods using tens of features [26]. We used this method for our
evaluation experiment. As suggested by [26], we chose the
J48 decision-tree method to build models for the classes.

3.3.3 Control-flow graph-based detection
Control-flow graph (CFG) have been extensively used for

detecting similarities between executables [5,8,15]. Kruegel
et al. [15] extracted CFGs from network streams and de-
tected polymorphic worms by identifying structural similar-
ities. In this approach, the control flow graphs are decom-
posed into a set of subgraphs of fixed size k. Worm detection
and classification occurs by identifying the prevalence of k-
subgraph features between worm-like executable content and
unknown executable content. We used the tool made avail-
able by [15] for the comparison experiment. The similarity
measure between two samples is calculated as below:

CFG similarity =
number of matching subgraphs

total number of subgraphs
.
As the focus of this paper is on packer-agnostic approach

of malware detection, in all of our experiments, malware
samples were used without unpacking. This includes the
control-flow graph-based detection experiment. One can ar-
gue that this may not be a fair comparison, as the control-
flow graph extracted from a packed executable is usually
representative of the unpacking routines only, rather than
the actual malware code. However, we are interested in the
comparison of the effectiveness of these algorithms when ap-
plied directly on packed malware. The weak results of the
CFG-based approach in this case show that the method is
not suitable for packed executables.

4. DATASET
We prepared three datasets for the evaluation of detection

methods.

Benign dataset
For the first dataset, we collected benign executables from
three different sources, a fresh Windows XP SP2 install,
the ZDnet Software Directory, and the National Software
Reference Library (NSRL) maintained by NIST. Our be-
nign dataset contains 377 executables from a fresh Win-
dows installation, the top 3000 most popular downloads
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Figure 4: The toxicity ratio distribution of 1.2 million
malware samples.

from ZDnet Software Directory, and 49,373 software bina-
ries from NSRL. We consider the most downloaded software
from ZDnet Software Directory as benign. We assume that
a malicious software sample does not appear in the most-
downloaded list of a well-reputed site. All of these samples
were also cross-checked with VirusTotal [2] to make sure that
none of the antivirus vendors flag them as malicious.

Malicious dataset
Malware dataset creation is a difficult problem [17, 27]. We
built our second dataset from the executable samples sub-
mitted to Anubis [1]. Anubis is a dynamic malware analy-
sis platform that receives thousands of samples for analysis
everyday. We obtained the malware samples submitted to
Anubis in 2011, along with the latest antivirus labels asso-
ciated with each sample. Antivirus labels are provided by
VirusTotal [2], which includes labels from different antivirus
vendors for each submitted sample. To each sample, we as-
sociate a toxicity ratio τ , where τ is the ratio of the total
number of antivirus vendors that detected the sample as ma-
licious to the total number of antivirus vendors checked by
VirusTotal. The density distribution of the toxicity ratio of
1.2 million malware samples is shown in Fig. 4. It clearly
shows that the ratio is concentrated either towards a smaller
value or towards a larger value. This means, either only a
few antivirus vendors are likely to label a sample as mali-
cious (sometimes spurious) or almost all vendors are likely
to label it as malicious. From this set of samples, we built
the malicious dataset by taking samples with τ > 0.9, that
is, the set of binary samples which were flagged as mali-
cious by 90% of the antivirus vendors. Some samples were
missing results from some of the antivirus vendors. To main-
tain an effective large majority, we discarded those samples
that have results from less than 30 antivirus vendors (out of
49). This consensus by a majority of antivirus vendors is a
result of many human experts who have analyzed the sam-
ple (or similar samples) and concluded it to be malicious.
Moreover, to have a stronger confidence on this consensus,
we chose older samples observed in 2011 with their latest
antivirus labels obtained after a year.
The samples-per-malware-family metric of this type of

datasets are usually skewed because of the abundance of
some widely popular malware families, which are usually
more frequently submitted to such public analysis platform,
such as Anubis. Therefore, out of the large malware dataset
observed in 2011, we only took at most 100 samples per mal-
ware family. The dataset after this selection contains 51,058
unique malware samples representing 15,089 malware fami-
lies.
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Figure 5: Feature robustness against noise. Similar
symbols represent the variants from the same seed
binary.

Real-world dataset
To evaluate the performance of the detection methods on
real-world malware, we used the recent-feed of malware sam-
ples submitted to Anubis over three months, starting from
November 2012. This dataset contains 1.2 million samples.

5. EVALUATION

5.1 Experimental setup
The signal processing-based features of both malware and

benign datasets are computed and stored in memory in the
Balltree data structure. In the N-gram-based detection, we
used a bit-vector approach to encode the N-gram signature,
as proposed in [10]. This transforms the Jaccard computa-
tion into more CPU-friendly logic operations, and speeds up
the computation by many orders of magnitude. Like previ-
ous N-gram based works [9, 23], we set n=2 and n=3.

5.2 Experiment against noise
We performed a synthetic experiment to test the robust-

ness of the feature against small modifications (noise) intro-
duced into the sample. We first generated four seed binaries
containing 200KB random bytes. We chose to use random
bytes such that we do not make any specific assumption
on the data pattern. From each of these seed binaries, we
generated synthetic variants by introducing random noise
to the original binary. Note that the differences among
the variants are even more pronounced due to these ran-
dom modifications. We computed signal processing features
from these synthetic variants and visualized using Multidi-
mensional scaling (MDS), as shown in Figure 5. We can see
that the features can be used to cluster the variants even
when 50% of the original bytes are randomly modified. In
the case of malware binaries, such noise may be introduced
by a polymorphic or metamorphic engine.

5.3 Detection
At first, we analyzed the classification strength of the

SigMal features using various machine learning classifiers.
Single nearest-neighbor distances based classifier provided
the best result. In the next step, using Nearest Neighbor
(NN) classifier, we performed a comparative evaluation of
SigMal with existing detection methods. We used the stan-
dard 10-fold cross-validation process on the same dataset for
all methods. The evaluation dataset used in this experiment
is described in Section 4.
We performed the precision-recall analysis by varying the

threshold value t of the detection confidence parameter c (in-

Figure 6: The nearest-neighbor distance distri-
bution of 100K samples from the 10-fold cross-
validation experiment of SigMal. For each point,
X-axis represents the nearest-neighbor distance to
malware dataset, and Y-axis represents the the
nearest-neighbor distance to the benign dataset.

troduced in Section 3.1). For each testing sample, SigMal re-
turns two nearest-neighbor distances dm and db correspond-
ing to the malware and benign training sets, respectively.
Fig. 6 shows the distribution of these distances computed
from the 10-fold cross-validation experiment. A sample with
shorter distance to the malware dataset than to the benign
dataset falls in the upper left section of the graph. The area
inside the dotted line represents the confusion area given by
the inequality c < t, when the threshold value is chosen as
t = 0.1. Samples within this confusion area are marked as
unknown because their detection confidence value (c) is not
large enough. A change in the threshold value t changes the
performance of the detection. Higher values of threshold t
produce more precise results by widening the confusion area,
while reducing the recall rate.
Both N-gram-based method and CFG-based method pro-

vide similarity measures instead of distance measures. To
perform the precision-recall analysis, we vary a threshold s,
which, in this case, is a threshold for the minimum similar-
ity. If a resulting value of the similarity measure for a query
sample is less than the threshold parameter s, we consider
the value to be too weak, and the sample is marked as un-
known. In case of the PE structure-based detection, we vary
the output class probability of the decision tree classifier.
The precision-recall analysis of all detection methods is

presented in Fig 7. One can see that our method has the
best overall performance. We achieved very high precision
(99.66%), while still maintaining a good recall rate of about
50%. When only the code-section of the executable is used
to extract the features, the performance degrades. This sug-
gests that the overall layout of different sections of an ex-
ecutable is also an effective feature for similarity detection.
As reported in previous work [30, 31], PE structure-based
methods produced overall good precision and recall rates.
However, it could not improve the precision above 98%. In
cases where greater recall is important, our method still has
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Figure 7: Comparison of malware detection algo-
rithms.

second best precision compared to the rest of the methods.
The N-gram-based method (when n = 3) has relatively good
overall performance. However, the computational overhead
is high. Because the packed samples were not unpacked,
as expected, the control-flow-graph-based method did not
produce good results.
There is the possibility of the classifier being biased de-

tecting packed and unpacked executables, instead of mali-
cious and benign. To test this, we packed our benign dataset
using three popular executable packers: UPX, WinUpack,
and NSPack, and used this dataset as the benign dataset
for the 10-fold cross-validation experiment. The results were
still comparable to the result with normal benign samples.

5.4 Performance
In this section, we compare the time and space efficiency

of the algorithms. We focus on the time required by two
main steps: building the features and detecting the similar-
ity. We measured the memory requirements to compare the
space efficiency. For accurate measurement of memory and
time usage, all of the feature-extraction processes were modi-
fied from multi-threaded implementations to single-threaded
implementations in this particular experiment. All perfor-
mance experiments were done in the same computational en-
vironment (Linux 3.2.0-35 machine, Intel i7 3.33GHz/12GB).
We measured the computation time required by the fea-

ture extraction of ten thousands samples for each algorithm.
The average time required to compute these different types
of features are presented in Table 1. Since the PE-heuristics
method inspects only the header part of the executable,
it is the fastest among all. SigMal feature extraction is
about five times faster than the CFG feature extraction and
seven times faster than the N-gram feature extraction. We
also measured the average per-sample space requirements for
storing raw bytes of the features in the memory. Again, the
PE-heuristics method requires the least amount of space to
store features, since its feature dimensionality is the small-
est. SigMal features require two times less memory com-
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Figure 8: Query performance comparison. X-axis
is the number samples used in each 10-fold experi-
ment. Y-axis is the average of the total query time
in each fold of that experiment.

pared to N-gram features (2-grams) and 78 times less mem-
ory compared to CFG features.

Table 1: Average per sample feature extraction time
in seconds and per sample memory requirements in
kilobytes.

SigMal N-gram PE-heuristics CFG
Time 0.0265 0.1965 0.0024 0.1379
Space 3.783 8.000 0.0664 297.745

To evaluate the scalability of the algorithms, we performed
the 10-fold cross-validation experiments using datasets of
increasing number of samples, such that both the training
samples and the testing samples are increasing in each ex-
periment. We chose this option to resemble a real-world
scenario, where both the number of new known malware
samples (training set) and the number of samples to be in-
spected (testing set) are continuously increasing. For each
10-fold experiment, we computed the average of the total
time required for the detection query in each fold. The re-
sults are presented in Fig. 8. We can see that our method
is easily scalable to hundreds of thousands of samples. In a
10-fold cross-validation experiment on a dataset of 100,000
samples (80,000 in the training set, 20,000 in the testing
set) average per sample query response was 47.95 millisec-
onds. The quadratic increase in the query response time
of N-gram-based and CFG-based approaches is primarily
because of the O(NM) computational cost of the Jaccard-
similarity comparisons. As expected, the decision-tree-based
PE-heuristics method is the fastest among all.

5.5 Real-world experiments
We showed that our method works well in a limited dataset

of old samples. Many of the previous works were also eval-
uated using a similar dataset. However, we wanted to eval-
uate their performance when applied to a large dataset of
recent real-world samples. Results from such datasets can
demonstrate the true applicability of a method.

5.5.1 Experimental setup
We observed that when an old malware dataset was used

as the ground truth for the detection of recent malware,
as expected, the detection performance was poor. When
we combined both old and new malware dataset, the query
response time of SigMal significantly increased. This is be-
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Figure 9: Overview of the sliding window experi-
ment on the real world samples.

cause of the increased search-space for the nearest-neighbor
query. The scalability problems with other methods were
even more critical while using larger ground truth datasets.
Because of this scalability problem, we prepared a fresh
malware ground truth on a daily basis using the malware
samples observed in the recent past. The overview of this
approach is presented in Fig. 9. More precisely, for the
nth day’s experiment, we built a dynamic malware dataset
by taking the set of malware samples observed in the past
time window of w days (from day (n − w) to day (n − 1)).
We can infer from the toxicity density distribution (Fig. 4)
that the confidence starts to build up at τ = 0.6. Hence,
for the recent samples, we used a less conservative value of
τ > 0.6 for building the dynamic training set. We use the
samples submitted on day n as the testing set for the nth

day experiment. For the comparison of the SigMal detection
results, we need to label each of these incoming samples as
benign or malicious using recent antivirus labels. However,
we noticed that few antivirus vendors falsely detect a benign
sample as malicious, if packed with some commonly avail-
able executable packer, such as Winpack. Again from the
toxicity graph, we can see that this confusion sustains up
until τ = 0.3. To avoid including such spurious labels, we
consider τ <= 0.3 as a low confidence value for the result
evaluation, and exclude it in our precision-recall analysis. To
find the optimal sliding time window in terms of speed and
accuracy for collecting the ground truth, we performed a set
of experiments using different values of w, ranging from 7
days to 60 days. The precision did not improve significantly
when the time window was greater than 30 days. Therefore,
we chose the time window w as 30 days for the rest of our
daily experiments.
As evident in the performance experiments in Section 5.4,

N-gram-based and CFG-based methods have a high com-
putational cost. For example, with the 30 days sliding-
window dataset, the CFG-based method required several
days to complete a single sliding window experiment even
with a parallelized implementation on a 24-core 96GB ma-
chine. Hence, this part of the comparison experiment on the
real-world dataset is limited to a few days.

5.5.2 Results
The precision and recall performance of the sliding win-

dow experiments are presented in Fig. 10. We can see that
at t = 0.33, more than 50% of the recent daily samples can
be accurately detected as malicious or benign with a preci-
sion of 99.5% (standard error 0.000835). This can essentially
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Figure 10: Precision and Recall of the SigMal detec-
tion on the real-world samples observed by Anubis
in December 2012 and January 2013. The figure
represents the mean values of the daily results and
the standard error.

reduce about 50% of the resource requirements of a triage
system by avoiding further, more expensive, analysis.
Fig. 11 presents the detection results of all methods, when

applied to the sliding window dataset (i.e., samples from the
month of November 2012 as the training set, and the samples
from December 1st 2012 as the testing set). One can see that
the performance of other methods is less impressive in terms
of precision. The PE-heuristics-based method and CFG-
based method have a relatively larger recall. However, they
do not produce high precision results. In case of the CFG-
based method, its computation cost is another critical factor
that makes it unsuitable for large-scale malware triage.

5.5.3 Evaluation with the current AV labels
Notice that the detection results were checked with the

VirusTotal results obtained at the time of the submission to
Anubis. However, there is a possibility that some malware
may not have been detected by the majority of antivirus
vendors at that time. Moreover, antivirus vendors may not
eventually detect all malware. Hence, an accurate analysis of
such false positives is difficult. Here, we are only interested
in how many malware samples SigMal could have detected
that AV vendors missed at the time of submission, but later
identified them as malware. We used an old dataset observed
in 2011, for which we have old antivirus labels retrieved from
VirusTotal during the time of the submission to Anubis. We
retrieved the latest antivirus labels for these samples. We
performed a simulated daily sliding-window experiment on
this dataset and re-evaluated our results with the updated
antivirus labels. We found out that SigMal could have de-
tected, on average, 70 malware samples per day before any
antivirus vendor detected them as malicious.

5.6 Limitations
In this section, we discuss the limitations of our approach.

Because our approach relies on instance-based learning, its
main limitation is that it can only detect malware similar to
what has already been observed. It cannot detect a zero-day
malware that is structurally dissimilar from the previously-
seen malware. This is a generic problem with any similarity-
based malware detection system.
Malware can infect a benign executable by patching and

embedding malicious code into it. If the embedded content
is very small relative to the actual benign file-size, then the
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Figure 11: Comparison of malware detection meth-
ods with a live malware feed (2012-12-01).

infected file is likely to be considered similar to the benign
file. When we manually analyzed the false negatives, we
found that the majority of them were a patched system bi-
nary. For example, we found instances of TDSS rootkit that
embeds its code into a small existing .rsrc section of Win-
dows driver files, such as netbt.sys. We also found false
positive cases of benign input files, which were not present
in the benign dataset, but its infected version was present
in the malware dataset. These problems are also generic to
file-similarity based detection techniques. One countermea-
sure can be flagging an input file as suspicious, if it is very
similar to a system file, but not exactly the same file.
If some strong cryptographic methods, such as AES, are

used by packers, it will be hard to find statistical similar-
ity among such encrypted samples. If the block chaining is
enabled, this problem becomes almost impossible. Our ap-
proach is unable to identify similarity in such cases. How-
ever, the use of strong encryption itself can be considered
suspicious, which malware writers would want to avoid. In
fact, our experiment showed that the majority of antivirus
vendors mark packed executables as suspicious or malicious,
even if the original executables were benign.
As a targeted attack to our system, an adversary could

insert large unused sections with random data into an ex-
ecutable. This may cause our heuristics to select wrong
sections as important sections. Since it is likely that no pre-
vious sample matches with the random data, such samples
will be considered unknown. In a more crafted attack, an
adversary could embed code section of a benign executable
as its largest section. This will generate the exact same
feature vectors corresponding to those sections. However,
the malicious code still needs to be embedded in the file to
make the crafted executable malicious. Because of this, the
part of the feature vector generated from the entire file will
still be dissimilar from the feature vector of the actual be-
nign executable. Hence, the crafted attack will not match
completely with the benign executable.

6. RELATED WORK

6.1 Signal processing
The SigMal feature extraction method is similar to the

malware visualization method proposed in [20]. However,
our method differs in the way we extract signals from the
sample using heuristics based on its PE structure. There
are several signal similarity features depending on the type

of signal (speech, image, video, seismic, and others). We re-
strict ourselves to image similarity features within the scope
of this paper. Some of the common image similarity fea-
tures are the Homogeneous Texture Descriptor (HTD) [28]
and the Color Layout Descriptor (CLD) [28]. The HTD is
a 96-dimensional texture-based image similarity descriptor,
where an image is filtered over 48 sub-bands after which
the mean and standard deviation on each filtered image are
grouped to form the feature vector. The CLD, on the other
hand, is a layout-based descriptor. The image is divided
into an 8x8 grid and the mean value of every grid block is
computed to obtain an 8x8 matrix. The Discrete Cosine
Transform is then computed and the top energy coefficients
form the feature vector.

6.2 Static malware similarity
Different approaches to static-feature-based malware anal-

ysis and triage systems have been proposed in the past. Most
of them use N-gram-based feature extraction [3,9,10,13,23,
29]. The recent work from Jacob et al. [9] studied the pre-
served statistical similarity over packed binaries and pro-
posed a packer-agnostic bigram-based similarity measure.
N-gram-based approaches are less scalable because of the
computationally expensive feature matching operation over
relatively large dimensionality of the N-gram feature space.
Jang et al. [10] proposed feature hashing to reduce the high-
dimensional feature space in malware analysis and imple-
mented feature hashing on N-gram based features. However,
its evaluation was performed on the clustering of an un-
packed malware dataset, and no benign samples were used
to test the accuracy of the system. A malware phylogeny
generation technique was proposed using N-perms to match
every possible permuted code [11]. Other packer-agnostic
approaches include the detection method based on features
extracted from the PE file structure [24, 26, 30, 31, 35]. Al-
though this approach is time efficient, results show that
achieving high accuracy is difficult.
Other work on static-features-based detection requires un-

packed code [5, 8, 10, 15]. With unpacked code, static fea-
tures can be extracted from the disassembled code. Hu et
al. [8] proposed function call graphs to implement an effi-
cient nearest-neighbor search on a large graph database of
malware. Kruegel et al. [15] proposed extracting control-
flow-graph from network streams to detect worms. We have
used CFG-based methods from [15] for the comparison of
approaches in our evaluation.

7. CONCLUSIONS
In this paper, we presented SigMal, a fast signal processing-

based malware similarity detection framework. It can op-
erate on both packed and unpacked samples, avoiding the
resource intensive unpacking process. We used heuristics
based on PE structure information to improve the signal
processing-based features. Our results showed that SigMal
outperforms all existing static malware detection methods in
terms of precision. Large-scale experiments on 1.2 million
recent samples, both packed and unpacked, observed over
three months demonstrated that our method can classify
50% of the incoming samples with above 99% precision.
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