
Detecting Environment-Sensitive Malware

Martina Lindorfer, Clemens Kolbitsch, and Paolo Milani Comparetti

Secure Systems Lab, Vienna University of Technology
{mlindorfer,ck,pmilani}@seclab.tuwien.ac.at

Abstract. The execution of malware in an instrumented sandbox is a
widespread approach for the analysis of malicious code, largely because it
sidesteps the difficulties involved in the static analysis of obfuscated code.
As malware analysis sandboxes increase in popularity, they are faced with
the problem of malicious code detecting the instrumented environment
to evade analysis. In the absence of an “undetectable”, fully transparent
analysis sandbox, defense against sandbox evasion is mostly reactive:
Sandbox developers and operators tweak their systems to thwart indi-
vidual evasion techniques as they become aware of them, leading to a
never-ending arms race.
The goal of this work is to automate one step of this fight: Screening
malware samples for evasive behavior. Thus, we propose novel techniques
for detecting malware samples that exhibit semantically different behav-
ior across different analysis sandboxes. These techniques are compatible
with any monitoring technology that can be used for dynamic analysis,
and are completely agnostic to the way that malware achieves evasion.
We implement the proposed techniques in a tool called Disarm, and
demonstrate that it can accurately detect evasive malware, leading to
the discovery of previously unknown evasion techniques.

Keywords: Malware, Dynamic Analysis, Sandbox Detection, Behavior
Comparison

1 Introduction

Dynamic analysis of malicious code has increasingly become an essential com-
ponent of defense against Internet threats. By executing malware samples in a
controlled environment, security practitioners and researchers are able to ob-
serve its malicious behavior, obtain its unpacked code [17, 21], detect botnet
command and control (C&C) servers [30] and generate signatures for C&C traf-
fic [27] as well as remediation procedures for malware infections [24]. Large-scale
dynamic malware analysis systems (DMAS) based on tools such as Anubis [6]
and CWSandbox [35] are operated by security researchers1 and companies2,3.
These services are freely available to the public and are widely used by security

1Anubis: Analyzing Unknown Binaries (http://anubis.iseclab.org/)
2SunbeltLabs (http://www.sunbeltsecurity.com/sandbox/)
3ThreatExpert (http://www.threatexpert.com/)

2 Martina Lindorfer, Clemens Kolbitsch, and Paolo Milani Comparetti

practitioners around the world. In addition to these public-facing services, pri-
vate malware analysis sandboxes are operated by a variety of security companies
such as Anti-Virus vendors. Like most successful security technologies, malware
analysis sandboxes have therefore attracted some attention from miscreants.

One way for malware to defeat dynamic analysis is to detect that it is run-
ning in an analysis sandbox rather than on a real user’s system and refuse to
perform its malicious function. For instance, code packers that include detection
of virtual machines, such as Themida, will produce executables that exit imme-
diately when run inside a virtual machine such as VMWare [20]. There are many
characteristics of a sandbox environment that may be used to fingerprint it. In
addition to using “red pills” that aim to detect widely deployed emulation or
virtualization technology [29, 28, 25, 10, 11], malware authors can detect specific
sandboxes by taking advantage of identifiers such as volume serial numbers or IP
addresses. As we will discuss in Section 2, sandbox detection is not a theoretical
problem; Table 1 holds a number of concrete examples of how malware samples
have evaded analysis in our Anubis sandbox in the past.

One approach to defeating sandbox evasion is to try to build a transparent
sandbox. That is, to construct an analysis environment that is indistinguishable
from a real, commonly used production environment. This is the goal of systems
such as Ether [9]. However, Garfinkel et al. [12] argue that it is fundamentally
unfeasible to build a fully transparent virtual machine monitor, particularly if
code running in the sandbox has access to the Internet and can therefore query a
remote time source. In fact, Ether does not defend against timing attacks that use
a remote time source, while Pek et al. [26] have introduced a tool called nEther
that is able to detect Ether using local attacks. Even if transparent sandbox
technology were available, a specific sandbox installation could be detectable
based on the particular configuration of software that happens to be installed on
the system, or based on identifiers such as the product IDs of installed software [4]
or the universal identifiers of disk partitions.

Another approach relies on running a sample in multiple analysis sandboxes
to detect deviations in behavior that may indicate evasion [8, 18, 2, 15]. This
is the approach we use in this paper. For this, we run a malware sample in
several sandboxes, obtaining a number of behavioral profiles that describe its
behavior in each environment. We introduce novel techniques for normalizing
and comparing behavioral profiles obtained in different sandboxes. This allows us
to discard spurious differences in behavior and identify “environment-sensitive”
samples that exhibit semantically different behavior. We implement the proposed
techniques in a system called Disarm: DetectIng Sandbox-AwaRe Malware.

Disarm detects differences in behavior regardless of their cause, and is there-
fore completely agnostic to the way that malware may perform sandbox detec-
tion. Furthermore, it is also largely agnostic to the monitoring technologies used
in the analysis sandboxes, since it does not require heavyweight, instruction-level
instrumentation. Any monitoring technology that can detect persistent changes
to system state at the operating system level can take advantage of our tech-
niques.

Detecting Environment-Sensitive Malware 3

Previous work on detecting and remediating analysis evasion has required
fine-grained, instruction-level instrumentation [18, 15]. In our experience oper-
ating Anubis, a DMAS that processes tens of thousands of samples each day,
we have found that large-scale deployment of instruction-level instrumentation
is problematic. This is because it leads to an extremely slow emulated environ-
ment, to the point that some malware fail to perform network communication
because of server-side timeouts. Furthermore, the produced log files are unman-
ageably large (up to half a Gigabyte for a single execution according to Kang et
al. [18]). Disarm does not suffer from this limitation. This allows us to apply
our techniques to a significant number of malware samples, revealing a variety
of anti-analysis techniques.

Chen et al. [8] also performed a large-scale study of analysis-resistant mal-
ware. However, their work assumes that an executable is evading analysis when-
ever its executions differ by even a single persistent change. This assumption
does not seem to hold on a dataset of modern malware: as we will show, about
one in four malware samples we tested produced different persistent changes
between multiple executions in the same sandbox. Disarm executes malware
samples multiple times in each sandbox to establish a baseline for a sample’s
variation in behavior. Furthermore, we introduce behavior normalization and
comparison techniques that allow us to eliminate spurious differences that do
not correspond to semantically different behavior.

Disarm does not, however, automatically identify the root cause of a diver-
gence in behavior. Samples we detect could therefore be further processed using
previously proposed approaches to automatically determine how they evade anal-
ysis. For instance, the techniques proposed by Balzarotti et al. [2] can be used
to automatically diagnose evasion techniques that are based on CPU emulation
bugs. Differential slicing [15] is a more general technique that can likewise iden-
tify the root cause of a divergence, but it requires a human analyst to select a
specific difference in behavior to be used as a starting point for analysis.

We evaluate Disarm using four sandboxes with two different monitoring
technologies: In-the-box monitoring using a Windows device driver, and out-of-
the-box monitoring using Anubis. We tested the system on a dataset of over 1,500
samples, and identified over 400 samples that exhibit semantically different be-
havior in at least one of the sandboxes considered. Further investigation of these
samples allowed us to identify a number of previously unknown techniques for
evading our two monitoring technologies. Most of these evasion techniques can
be trivially defeated with small changes to our analysis sandboxes. Furthermore,
Disarm helped us to discover several issues with the configuration of software
installed inside our sandboxes that, while unrelated to evasion, nonetheless pre-
vent us from observing some malicious behavior.

To summarize, our contributions are the following:

– We introduce a system called Disarm for detecting environment-sensitive
malware by comparing its behavior in multiple analysis sandboxes. Disarm
is entirely agnostic to the root cause of the divergence in behavior, as well
as to the specific monitoring technologies employed.

4 Martina Lindorfer, Clemens Kolbitsch, and Paolo Milani Comparetti

– We develop a number of novel techniques for normalizing and comparing
behavior observed in different sandboxes, discarding spurious differences that
do not correspond to semantically different behavior.

– We tested Disarm by running over 1,500 malware samples in four different
analysis sandboxes based on two monitoring technologies, and show that it
can accurately detect environment-sensitive malware.

– As a result of these experiments, we discovered a number of previously un-
known analysis evasion techniques. Concretely, these findings will allow us
to improve the analysis capabilities of the widely used Anubis service.

2 Motivation and Approach

To make the case for Disarm, we will provide a brief history of analysis evasion
against Anubis. Anubis is a dynamic malware analysis system (DMAS) that
is based on an instrumented Qemu [7] emulator. The main output of Anubis
analysis is a human-readable report that describes the operating system level
behavior of the analyzed executable. Our lab has been offering malware analysis
with Anubis as a free service since February 2007. This service has over 2,000
registered users, has received submissions from 200,000 distinct IP addresses,
and has already analyzed over 10,000,000 malware samples.

Public-facing analysis sandboxes such as Anubis are particularly vulnerable
to detection, because attackers can probe the sandbox by submitting malware
samples specifically designed to perform reconnaissance. Such samples can read
out characteristics of the analysis sandbox and then use the analysis report
produced by the sandbox to leak the results to the attacker. These characteristics
can later be tested by malware that wishes to evade analysis. However, because
of sharing of malware samples between sandbox operators, private sandboxes
may also be vulnerable to reconnaissance [36], so long as they allow executed
samples to contact the Internet and leak out the detected characteristics.

The first instance of Anubis evasion that we came across in the wild was
a packer called OSC Binder that was released in September 2007 and adver-
tised “anti-Anubis” features. Since then, we have become aware of a number of
techniques used by malware to thwart Anubis analysis.

Chen et al. [8] have proposed a taxonomy of approaches that can be used by
malware for the detection of analysis sandboxes. These are not limited to tech-
niques that aim to detect virtualized [29] or emulated [28, 25] environments, but
also include application-level detection of characteristic features of a sandbox,
such as the presence of specific processes or executables in the system.

Table 1 shows a number of Anubis evasion techniques that we have become
aware of over the years, classified according to an extended version of this taxon-
omy. Specifically, we added one abstraction (Network) and two classes of artifacts
(Connectivity and Unique identifier) to the taxonomy. The unique identi-
fier class is required because many of the detection techniques that have been
used against Anubis are not targeted at detecting the monitoring technology
used by Anubis, but a specific instance of that technology: The publicly ac-
cessible Anubis service. The connectivity class is required because the network

Detecting Environment-Sensitive Malware 5

Table 1. Anubis evasion techniques according to taxonomy [8] (extended).

Abstraction Artifact Test
Hardware unique id disk serial number [4]

Environment execution MOD R/M emulation bug [25]
AAM instruction emulation bug

Application

installation
C:\exec\exec.exe present
username is “USER” [4]
executable name is “sample.exe” [4]

execution popupkiller.exe process running

unique id

windows product ID [4]
computer name [4]
volume serial number of system drive
hardware GUID

Network connectivity get current time from Yahoo home page
check Google SMTP server response string

unique id server-side IP address check [36, 19, 16]

configuration of a DMAS faces a trade-off between transparency and risk. It is
typically necessary to allow malware samples some amount of network access to
be able to observe interesting behavior. On the other hand, we need to prevent
the samples from causing harm to the rest of the Internet. A malware sample,
however, may detect that it is being provided only limited access to the Inter-
net, and refuse to function. For instance, a DMAS needs to stop malware from
sending SPAM. Rather than blocking the SMTP port altogether, it can redirect
SMTP traffic to its own mail server. Some variants of the Cutwail SPAM engine
detect this behavior by connecting to Gmail’s SMTP servers and verifying that
the server replies with a specific greeting message.

In the past we have mostly become aware of analysis evasion techniques “by
accident”. Some samples that evade Anubis have been brought to our attention
by Anubis users, while a few Anubis evasion techniques have been discussed
in hacker forums and security blogs. In a few instances the Anubis developers
have made more deliberate efforts to identify evasion techniques. In one case, a
collection of code packers were tested to determine whether and how they evaded
Anubis. In another instance, we obtained a number of “red pills” generated by a
fuzzer for CPU emulators [25], and fixed the bugs they identified.

In the arms race between malware analysis systems and malware samples
that evade analysis, we need to be able to rely on more automation. For this,
we require scalable tools to screen large numbers of malware samples for evasive
behavior, regardless of the class of evasion techniques they employ. This is the
role that Disarm aims to fill.

6 Martina Lindorfer, Clemens Kolbitsch, and Paolo Milani Comparetti

Execution Monitoring Behavior Comparison

Behavior
Normalization

Windows
Kernel
Module

Anubis Distance
Measure

and
Scoring

Same Behavior

Different Behavior

Behavioral
Profiles

Fig. 1. System Architecture of Disarm.

2.1 System Architecture

Disarm works in two phases, illustrated in Fig. 1. In the execution monitoring
phase, a malware sample is executed in a number of analysis sandboxes. For
the purpose of this paper, we define a sandbox as a combination of a monitoring
technology with a system image: That is, a specific configuration of an operating
system on a virtual disk. We execute a sample multiple times in each sandbox.
The output of this execution monitoring provides us with the malware’s behav-
ior represented as a number of behavioral profiles (one for each execution). In
the behavior comparison phase, we normalize the behavioral profiles to eliminate
spurious differences. We then compute the distances between each pair of nor-
malized behavioral profiles. Finally, we combine these distances into an evasion
score, that is compared against a threshold to determine whether the malware
displayed different behavior in any of the sandboxes. Samples that are classified
as showing signs of evasion can then be further analyzed in order to identify new
evasion techniques and make our sandboxes resilient against these attacks.

3 Execution Monitoring

We analyze malware behavior using two different monitoring technologies. The
first is Anubis [6], which is an “out-of-the-box” monitoring technology that cap-
tures an executable’s behavior from outside the Windows environment using an
instrumented full system emulator. The second system uses “in-the-box” moni-
toring based on system call interception from inside the Windows environment.
The idea is that by using two completely different monitoring technologies we are
able to reveal sandbox evasion that targets a specific instrumentation technique.
Furthermore, we employ sandboxes that use different Windows installations in
order to detect evasion techniques that rely on application and configuration
characteristics to identify analysis systems.

3.1 In-the-Box Monitoring

The Anubis system has been extensively described in previous work [6, 3]. For
in-the-box monitoring, on the other hand, we use a custom-built system that

Detecting Environment-Sensitive Malware 7

provides lightweight monitoring of a malware’s behavior at the system call level.
To this end, we implemented a Microsoft Windows kernel module that inter-
cepts system calls by hooking the entries of the System Service Dispatch Table
(SSDT) [13]. This driver records the system call number, a timestamp and se-
lected input parameters, before forwarding the call to the actual system call.
After execution, the driver further records the output parameters and the re-
turn value. To log only relevant data, the driver maintains a list of processes
related to the analyzed malware, and only logs calls originating from these pro-
cesses. Events such as process creation, service creation, injection of threads into
foreign processes, foreign memory writes, and mapping of memory into a foreign
process, trigger the inclusion of new processes into the analysis. To maintain
the integrity of our system, we prohibit the loading of any other drivers by not
forwarding calls to NtLoadDriver and NtSetSystemInformation.

3.2 Behavior Representation

The analysis of samples with either monitoring technology leads to the creation
of a number of analysis artifacts such as a human-readable report summarizing
the observed behavior, a detailed log of system calls, a network traffic trace of
all network communication performed by the malware, the malware’s standard
output and error as well as the content of any files generated during analysis. For
the purpose of this work we chose to represent malware’s system and network-
level behavior as a behavioral profile [3, 5]. A behavioral profile is extracted from
system call and network traces and represents behavior as a set of features. Each
feature represents an action on an operating system (OS) resource, and is iden-
tified by the type and name of the resource, the type of action and a boolean
flag representing the success or failure of the action. For example, a feature
could represent the successful creation of a file called C:\Windows\xyz.exe. For
network-related features the resource name is a tuple < IP, domain name >,
representing the network endpoint that the malware sample is communicating
with. We consider two network resources to be the same if either one of the
IP or the domain name used to resolve the IP are the same. The reason is that
fast-flux service networks [32] or DNS-based load balancing may lead malware to
contact different IPs in different executions. Finally, each feature is tagged with
a timestamp, representing the offset into the analysis run when the feature was
first observed [5]. As we will see, this is essential to be able to compare behav-
ior across monitoring technologies with vastly different performance overheads.
The behavioral profiles used in [3] also include features that represent data-flow
between OS resources. To maintain compatibility with lightweight monitoring
technologies that cannot track the flow of data within the monitored programs,
we do not consider such features in this work.

4 Behavior Comparison

When comparing behavioral profiles produced by different monitoring technolo-
gies, it is highly unlikely that they will contain the same amount of features. The

8 Martina Lindorfer, Clemens Kolbitsch, and Paolo Milani Comparetti

reason is that each monitoring technology is likely to have significantly different
runtime overheads, so a sample will not be able to execute the same number of
actions on each system within a given amount of time. Nor can we simply in-
crease the timeout on the slower system to compensate for this, since monitoring
overheads may vary depending on the type of load. Thus, given two sandboxes α
and β and the behavioral profiles consisting of nα and nβ features respectively,
Disarm only takes into account the first min(nα, nβ) features from each profile,
ordered by timestamp. In a few cases, however, this approach is not suitable. If
the sample terminated on both sandboxes, or it terminated in sandbox α and
nα < nβ , we have to compare all features. This is necessary to identify samples
that detect the analysis sandbox and immediately exit. Samples that detect a
sandbox may instead choose to wait for the analysis timeout without performing
any actions. We therefore also compare all features in cases where the sample
exhibited “not much activity” in one of the sandboxes. For this, we use a thresh-
old of 150 features, that covers the typical amount of activity performed during
program startup. This is the threshold used by Bayer et al. [4], who in contrast
observed 1,465 features in the average profile.

Not all features are of equal value for characterizing a malware’s behavior.
Disarm only takes into account features that correspond to persistent changes to
the system state as well as features representing network activity. This includes
writing to the file system, registry or network as well as starting and stopping
processes and services. This is similar to the approach used in previous work [1,
8] and, as we will show in Section 5.1, it leads to a more accurate detection of
semantically different behavior.

4.1 Behavior Normalization

In order to meaningfully compare behavioral profiles from different executions of
a malware sample, we need to perform a number of normalization steps, mainly
for the following two reasons: The first reason is that significant differences in
behavior occur even when running an executable multiple times within the same
sandbox. Many analysis runs exhibit non-determinism not only in malware be-
havior but also in behavior occurring inside Windows API functions, executables
or services. The second reason is that we compare behavioral profiles obtained
from different Windows installations. This is necessary to be able to identify
samples that evade analysis by detecting a specific installation. Differences in
the file system and registry, however, can result in numerous differences in the
profiles. These spurious differences make it harder to detect semantically differ-
ent behavior. Therefore, we perform the following normalizations on each profile.

Noise Reduction. In our experience even benign programs cause considerable
differences when comparing profiles from different sandboxes. As a consequence,
we captured the features generated by starting four benign Windows programs
(notepad.exe, calc.exe, winmine.exe, mspaint.exe) on each sandbox, and consider
them as “noise”. These features are filtered out of all behavioral profiles. Similarly,
we filter out the startup behavior of explorer.exe, iexplore.exe, cmd.exe, and

Detecting Environment-Sensitive Malware 9

Dr. Watson. This normalization eliminates a number of differences that are not
directly related to malware behavior.
User Generalization. Programs can write to the user’s home directory in
C:\Documents and Settings\<username> without needing special privileges.
Malware samples therefore often write files to this directory. In the registry, user
specific data is stored in the key HKEY_CURRENT_USERS, which actually points to
HKEY_USERS\<SID>. The SID is a secure identifier created by the Windows setup
program. It is unique for every user and system. Profiles from different systems
certainly differ in the users SID and may also contain different usernames. We
therefore generalize these values.
Environment Generalization. Other system specific values include hardware
identifiers and cache paths. Furthermore, names of folders commonly accessed by
malware, e.g. C:\Documents and Settings and C:\Program Files and their
respective subfolders, depend on the language of the Windows installation. We
generalize these identifiers and paths to eliminate differences not caused by mal-
ware behavior when comparing profiles from different Windows installations.
Randomization Detection. Malware samples often use random names when
creating new files or registry keys. Since Disarm executes each sample multiple
times in each sandbox, we can detect this behavior by comparing profiles ob-
tained in the same sandbox. Like the authors of MIST [33], we assume that the
path and extension of a file are more stable than the filename. As a consequence,
we detect all created resources (in the filesystem or registry) that are equal in
path and extension but differ in name. If the same set of actions is performed
on these resources in all executions, we assume that the resource names are ran-
dom. We can thus generalize the profiles by replacing the random names with a
special token.
Repetition Detection. Some types of malware perform the same actions on
different resources over and over again. For instance, file infectors perform a
scan of the filesystem to find executables to infect. This behavior leads to a
high number of features, but in reality only represents one malicious behavior.
Furthermore, these features are highly dependent on a sandbox’s file system
and registry structure. To generalize these features, we take into account actions
that request directory listings or enumerate registry keys. We also consider the
arguments that are passed to the enumeration action, for example queries for files
with extension “.exe”. For each such query, we examine all actions on resources
that match the query. If we find any actions (such as a file write) that are
performed on three or more such resources, we create a generalized resource in
the queried directory and assign these actions to it.
Filesystem and Registry Generalization. For each sandbox, we create a
snapshot of the Windows image’s state at analysis start. This snapshot includes
a list of all files, a dump of the registry, and information about the environment.
We use this information to generalize the user and the environment. We can also
use this information to view a profile obtained from running on one image in
the context of another image. This allows us to remove actions that would be
impossible or unnecessary in the other image. That is, we ignore the creation of a

10 Martina Lindorfer, Clemens Kolbitsch, and Paolo Milani Comparetti

resource that already exists in the other image and, conversely, the modification
or deletion of a resource that doesn’t exist in the other image.

4.2 Distance Measure and Scoring

The actions in our behavioral profiles are represented as a set of string features.
We thus compare two behavioral profiles using the Jaccard distance [14]:

J(a, b) = 1− |a ∩ b|/|a ∪ b|. (1)

Balzarotti et al. [2] observed that two executions of the same malware program
can lead to different execution runs. Our own experiments reveal that about
25 % of samples execute at least one different persistent action between multiple
executions in the same sandbox. Because of this, we cannot simply consider a
high distance score as an indication of evasion. Instead, we consider the devia-
tions in behavior observed within a sandbox as a baseline for variations observed
when comparing behavior across different sandboxes. We therefore calculate an
evasion score defined as:

E = max
1<i<n

{
max

1<j<n,i6=j

{
distance(i, j)−max{diameter(i),diameter(j)}

}}
. (2)

Here, diameter(i) is the full linkage (maximum) distance between executions in
sandbox i, while distance(i, j) is the full linkage (maximum) distance between all
executions in sandboxes i and j. The evasion score is thus the difference between
the maximum inter-sandbox distance and the maximum intra-sandbox distance.
The evasion score is in the interval [0,1], with 0 representing the same behavior
and 1 representing completely different behavior. If this score exceeds an eva-
sion threshold, Disarm declares that the malware has performed semantically
different behavior in one of the sandboxes.

5 Evaluation

To evaluate the proposed approach, we tested our system using our two monitor-
ing technologies and three different operating system images. Table 2 summarizes
the most important characteristics of the four sandboxes we employed. To sim-
plify deployment, we ran the driver-based sandboxes inside an unmodified Qemu
emulator (version 0.11), rather than on a physical system. This limits our ability
to detect evasion techniques targeted against Qemu CPU emulation bugs that
may be present in both monitoring technologies. In the future, we plan to ex-
tend our driver-based monitoring system to automatically analyze samples on a
physical system. For this, we need to be able to reset the system to a fresh state
after each analysis. As an alternative, we could instead use an existing DMAS
such as CWSandbox, that already provides such functionality.

In the following we will refer to the sandboxes used for evaluation by the
names shown in the first column of Table 2. The first image, used in the Anu-
bis and Admin sandboxes, was an image recently used in the Anubis system.

Detecting Environment-Sensitive Malware 11

Table 2. Sandboxes used for evaluation.

Sandbox Monitoring
Technology

Image Characteristics
Software Username Language

Anubis Anubis Windows XP Service Pack 3,
Internet Explorer 6

Administrator English

Admin Driver same Windows image as Anubis
User Driver Windows XP Service Pack 3,

Internet Explorer 7, .NET
framework, Java Runtime En-
vironment, Microsoft Office

User English

German Driver Windows XP Service Pack 2,
Internet Explorer 6, Java
Runtime Environment

Administrator German

We selected two additional images that included a significantly different soft-
ware configuration. The three images differ in the language localization, the
username under which the malware is running, as well as the available software
and software versions. Each sample is analyzed three times in each of the four
different sandboxes, resulting in a total of 12 runs per sample.

5.1 Training Dataset

To develop our techniques and select a threshold for evasion detection, we cre-
ated a small, labeled training set. For this, we selected 175 malware samples
among those submitted to Anubis in August 2010. To ensure this small dataset
was as diverse as possible, we selected samples belonging to 175 different mal-
ware families, based on virus labels from Kaspersky Anti-Virus. Furthermore,
we included ten additional samples based on comments from Anubis users, for
a total of 185 samples.

To establish a “ground truth” for the training set we manually inspected the
generated behavioral profiles and in a few cases even the binaries themselves.
Manual classification of these samples showed that 43 (23.24 %) displayed differ-
ent behavior in at least one of the sandboxes. These samples were further split
into four groups: samples evading Anubis, samples evading our driver, samples
requiring the .NET framework and therefore only working in the User sandbox
(see Table 2), samples not working in the German sandbox due to hardcoded
paths, and samples showing different behavior due to various other installation
characteristics (e.g. the missing installation of Java in the Anubis image). Table 3
summarizes the amount of samples for each class.

Our techniques succeeded in assigning low evasion scores to samples with
the same behavior and high scores to samples displaying different behavior. To
visualize these results, we plotted the maximum diameter against the maximum
distance discussed in Section 4.2 in Fig. 2. The overall score can be seen as the
distance of each point from the diagonal. Points close to the diagonal represent
samples with low scores, while points farther away from the diagonal represent

12 Martina Lindorfer, Clemens Kolbitsch, and Paolo Milani Comparetti

Table 3. Observed behavioral differences in the training set.

Description of behavior
76.76 % 142 same behavior
9.19 % 17 evasion of Anubis
5.41 % 10 .NET environment required
3.24 % 6 evasion of our driver
3.24 % 6 different behavior due to other characteristics
2.16 % 4 not working in the German environment

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Intra-Sandbox Distance

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

In
te

r-
S
a
n
d
b
o
x
 D

is
ta

n
ce

Same Behavior
Different Behavior

Fig. 2. Maximum diameter (intra-sandbox distance) vs. maximum distance (inter-
sandbox distance) with thresholds (0.4,0.5,0.6).

samples with high scores. Points close to the y-axis are samples exhibiting little
variation between analysis runs in the same sandbox. This is the case for the
larger part of our training set, confirming the effectiveness of our normalization
techniques. Only 8.11 % display a maximum intra-sandbox variation greater
than 0.1 as a result of non-deterministic behavior such as crashes that occur
only in some executions.

In Fig. 2, the samples classified as exhibiting different behavior are displayed
as filled points, while those with the same behavior are displayed as empty points.
Threshold candidates are displayed as parallels to the diagonal. For the training
set a threshold of 0.4 results in detecting all samples with different behavior,
while incorrectly classifying only one sample.

To measure the effect of the various normalization steps on the results, we
calculate the proportion of correctly classified samples in the training set for
each possible threshold. This metric, called accuracy, is defined as follows:

accuracy =
|True Positives|+ |True Negatives|

|All Samples|
· 100. (3)

Detecting Environment-Sensitive Malware 13

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Threshold

30

40

50

60

70

80

90

100

A
cc

u
ra

cy

default

noise

user

environment

random

repetitions

missing

Fig. 3. Overall accuracy for each normalization step at thresholds [0,1].

We applied the normalization steps, as described in Section 4.1 in ascending
order and calculated the accuracy for each step (see Fig. 3): no normalization
(default), the removal of noise (noise), the generalization of user-specific arti-
facts (user), the generalization of environment-specific artifacts (environment),
the detection and generalization of random names (random), the detection of
repetitions (repetitions), and the generalization of missing filesystem and reg-
istry resources (missing).

Overall we achieved an accuracy of more than 95 % for thresholds between
0.3 and 0.6, with the highest accuracy of 99.5 % at the chosen threshold of
0.4. Every normalization step improved the accuracy to some degree, with the
removal of noise and the generalization of user and environment yielding the
largest improvements. As we discussed in Section 4, Disarm considers persistent
actions for the behavioral comparison. If we instead consider all actions, we
obtain a maximum accuracy of 89.2 %.

5.2 Large Scale Test

We tested Disarm on a larger dataset of 1,686 samples submitted to Anubis
between December 2010 and March 2011. We selected a maximum of five samples
per sample family as classified by Kaspersky to make sure this dataset is diverse.
We used the evasion threshold of 0.4 selected in the previous section. Note that,
since we do not have a ground truth for this dataset, we are unable to provide
an accuracy score.

In this dataset, a total of 431 (25.56 %) samples resulted in an evasion score
above the threshold. Table 4 breaks these results down for each pair of sand-
boxes. The sandboxes Anubis and Admin use the same Windows image. We can

14 Martina Lindorfer, Clemens Kolbitsch, and Paolo Milani Comparetti

Table 4. Samples with evasion scores above the threshold of 0.4 for each pair of
sandboxes.

Anubis Admin User German
Anubis - 252 (14.95 %) 333 (19.75 %) 303 (17.97 %)
Admin - - 121 (7.18 %) 58 (3.44 %)
User - - - 138 (8.19 %)
German - - - -

Table 5. Samples with at least one different persistent action for each pair of
sandboxes.

Anubis Admin User German
Anubis 391 (23.19%) 729 (43.24%) 733 (43.48%) 755 (44.78%)
Admin - 440 (26.10%) 727 (43.12%) 730 (43.30%)
User - - 443 (26.28%) 780 (46.26%)
German - - - 435 (25.80%)

therefore attribute these results to evasion of one of the monitoring technologies
employed. Conversely, different behavior for any combination of Admin, User
and German indicates evasion or environment sensitivity related to differences
in the Windows environment. The results for Anubis-User and Anubis-German
are a combination of both factors and therefore produce the highest rates of
evasion.

Table 5 demonstrates that simply assuming a malware sample is evading an
analysis sandbox whenever two executions differ by as little as a single persistent
action (as was done in [8]) leads to misleading results. Close to one quarter
of samples display some difference in behavior even among executions in the
same sandbox. The problem is further exacerbated when considering different
sandboxes: Overall 990 samples (58.72 %) behave differently in at least one
sandbox according to this criterion.4

5.3 Qualitative Results

To get a feeling for differences causing a high ranking in our behavior compar-
ison, we manually examined randomly selected samples with an evasion score
above our threshold. The following examples illustrate how Disarm succeeded
in uncovering new methods used by malware to detect the presence of Anubis,
as well as pointing out ways to improve the configuration of the Windows images
in our analysis sandboxes.
Anubis Evasion. We found several timing-sensitive samples, that evade analy-
sis by detecting that the environment in which they are running is much slower
than a real system. For this, they use the GetTickCount API call before and

4To allow for a fair comparison across different Windows images, we applied our
user and environment normalization and ignored network activity.

Detecting Environment-Sensitive Malware 15

after executing several benign calls such as GetCommandLine. If the difference
exceeds a threshold, these samples do not exhibit malicious behavior. We are
able to detect these samples because our in-the-box monitoring technology, de-
spite running inside Qemu, is much faster than Anubis and does not exceed the
specified thresholds. This further highlights the importance of evasion detection
techniques that are compatible with lightweight instrumentation. Among these
samples were representatives of several well known malware families such as
Zeus, Virut, Agent and Rbot.

Win32.Packed.Krap.ag.5 and Win32.TrojanSpy.Banker.9 evade Anubis by
checking if the parent process is explorer.exe. In Anubis samples are started by
an analysis daemon, which terminates right away. Thus, this condition is not
met and these samples exit without performing any malicious activity.

To render known evasion techniques ineffective, Anubis already randomizes
a number of identifiers at each execution, such as those listed in Table 1. This is
implemented by intercepting the calls to known sources for this information and
forging the results. Inspecting samples detected by Disarm, however, reveals
that this feature needs to be improved. Several samples query a machine GUID
stored in HKLM\SOFTWARE\MICROSOFT\CRYPTOGRAPHY\MACHINEGUID, that is not
yet covered by Anubis randomization.5 In other cases, the randomization was
insufficient to prevent evasion. Trojan-Clicker.Win32.Wistler.d detected Anubis
by querying the computer name. Currently our computer names have the format
“pc” followed by a random number. Clearly, we need to implement stronger ran-
domization of this identifier. Finally, malware can also detect Anubis by checking
the hard drive manufacturer information. The randomization feature of Anubis
already intercepts the device control code IOCTL_STORAGE_QUERY_PROPERTY and
the system call NtQueryVolumeInformationFile and forges the return informa-
tion. Some samples, however, were able to bypass this randomization by instead
using the device control code DFP_RECEIVE_DRIVE_DATA to retrieve the hard
drive serial number and manufacturer.
Environment Sensitivity. The results of our evaluation also exposed various
configuration flaws in the image currently used in Anubis. In this image, third
party extensions for Internet Explorer are disabled. AdWare.Win32.InstantBuzz
queries this setting and terminates with a popup asking the user to enable
browser extensions. Four samples, e.g. Trojan.Win32.Powp.gen, infect the sys-
tem by replacing the Java Update Scheduler. Clearly, they can only show this
behavior in the sandboxes in which the Java Runtime Environment is installed.
Microsoft Office is only installed in one of our sandboxes and is targeted by
Worm.Win32.Mixor. P2P-Worm.Win32.Tibick.c queries the registry for the pres-
ence of a file-sharing application and fails on images where the Kazaa file-sharing
program is not installed. Using this insight we are able to modify the image used
in Anubis in order to observe a wider variety of malware behavior.
Driver Evasion. We prevent samples from loading drivers in order to main-
tain the integrity of our kernel module. Nonetheless, we found samples that not

5Note that this is a different identifier than the hardware GUID listed in Table 1,
which Anubis already randomizes.

16 Martina Lindorfer, Clemens Kolbitsch, and Paolo Milani Comparetti

only detect our logging mechanism, but also actively tamper with our SSDT
hooks. At least 20 samples employ mechanisms to restore the hooks to their
original addresses and therefore disable the logging in the driver. This can be
done from user space by directly accessing \device\physicalmemory and restor-
ing the values in the SSDT with the original values read from the ntoskrnl.exe
disk image [31]. Another ten samples achieve the same effect by using the un-
documented function NtSystemDebugControl to directly access kernel mem-
ory. These techniques are employed by several popular malware families such
as Palevo/Butterfly, Bredolab, GameThief and Bifrose, probably as a counter-
measure against Anti-Virus solutions. By disabling access to kernel memory and
instrumenting additional system calls, it is possible for us to harden our driver
against such techniques, so long as the kernel is not vulnerable to privilege-
escalation vulnerabilities.

False Positives. False positives were caused by samples from the Sality family.
This virus creates registry keys and sets registry values whose name depends
on the currently logged in user: HKCU\SOFTWARE\AASPPAPMMXKVS\A1_0 for “Ad-
ministrator” and HKCU\SOFTWARE\APCR\U1_0 for “User”. This behavior is not
random and not directly related to the user name and therefore undetected by
our normalization.

5.4 Limitations

Our results have shown that Disarm is able to detect evasion techniques used
in current, real-world malware samples. However, a determined attacker could
build samples that evade detection in ways our current system cannot detect. In
this section, we describe a few mechanisms an attacker could leverage, as well
as possible countermeasures.

First of all, malware could evade detection with Disarm if it were able to
evade analysis under all of our sandboxes. Therefore, sandbox characteristics
that are shared across monitoring technologies are of particular concern. Eva-
sion that is based on a sandbox’s network environment, for instance, would
currently be successful against Disarm, because all of our sandboxes currently
share a similar network environment. Malware authors could identify the public
IP addresses used by our sandboxes, and refuse to function in all of them. To
address this problem, we plan to configure our sandboxes to employ a large and
dynamic pool of public IP addresses. These can be obtained from commercial
proxy services or from ISPs that provide dynamic IP addresses to consumers.
More sophisticated attacks can try to detect the restrictions placed on a mal-
ware’s network traffic to prevent it from engaging in harmful activity such as
sending SPAM, performing Denial of Service attacks or exploiting vulnerable
hosts. Another characteristic that is common to many different monitoring tech-
nologies is the fact that they impose a performance overhead, and may thus
be vulnerable to timing attacks. As we showed in Section 5.3, our driver-based
monitoring technology, even running inside Qemu, was fast enough to escape
timing-based detection from some malware samples. However, more aggressive

Detecting Environment-Sensitive Malware 17

timing attacks would presumably be able to detect it. We can make timing-based
detection considerably harder by running the driver on a physical system instead
of in an emulator.

Malware authors aware of the specifics of our system could also attack Dis-
arm by trying to decrease their evasion score. Since the evasion score is the
difference between the inter-sandbox distance and the intra-sandbox distance,
this can be achieved by decreasing the former or increasing the latter. To in-
crease the intra-sandbox distance, an attacker could add large amounts of non-
deterministic behavior to the malware program. Here, one must consider two
things, however: First, a sandbox that can provide fine-grained instrumentation
(such as Anubis) may be able to detect execution that is highly dependent on
random values [3], and flag such samples as suspicious. Second, implementing
truly randomized behavior without impacting the reliability and robustness of
the program can be rather challenging. Unstable malware installations are likely
to raise suspicion, lead to fast removal from a system, or increase attention from
malware analysts - three outcomes truly unfavorable to an attacker.

Conversely, malware authors could try to decrease their intra-sandbox dis-
tance. Since we currently compute the distance between two behavioral pro-
files using Jaccard index, this can be achieved by adding a number of identical
features to the execution on all sandboxes. To defeat this attack, we could ex-
periment with evasion scores calculated from the set difference of each pair of
profiles, rather than from their Jaccard distance.

6 Related Work

Transparent Monitoring. To prevent sandbox detection, researchers have
tried to develop transparent analysis platforms. Examples include Cobra [34],
which is based on dynamic code translation, and Ether [9], which uses hardware
assisted virtualization to implement a transparent out-of-the-box malware analy-
sis platform. However Garfinkel et al. [12] have argued that perfect transparency
against timing attacks cannot be achieved, particularly if a remote timing source
(such as the Internet) is available. Pek et al. [26] have succeeded in defeating
Ether using a local timing attack.

Paleari et al. [25] used fuzzing to automatically generate “red pills” capable of
detecting emulated execution environments. Their results can be used to detect
and fix emulator bugs before malicious code can exploit them. Martignoni et
al. [22] proposed to observe malware in more realistic execution environments by
distributing the execution between a security lab and multiple end-user’s hosts.
They thereby improve analysis coverage and are able to observe user input that
triggers malicious behavior.
Evasion Detection. Chen et al. [8] were the first to develop a detailed taxonomy
of anti-virtualization and anti-debugging techniques. In their experiments, 40 %
of samples showed less malicious behavior with a debugger and 4 % of samples
exhibited less malicious behavior under a virtual machine. However, their results
were based on the comparison of single execution traces from different execution

18 Martina Lindorfer, Clemens Kolbitsch, and Paolo Milani Comparetti

environments (plain-machine, virtual-machine and debugger) and on considering
any difference in persistent behavior to indicate evasion. Lau et al. [20] focused
on virtual machine detection and employed a dynamic-static tracing system to
identify VM detection techniques in packers.

Balzarotti et al. [2] proposed a system that replays system call traces recorded
on a real host in an emulator in order to detect evasion based on CPU semantics
or on timing. Kang et al. [18] use malware behavior observed in a reference plat-
form to dynamically modify the execution environment in an emulator. They
can thereby identify and bypass anti-emulation checks targeted at timing, CPU
semantics and hardware characteristics. Moser et al. [23] explore multiple exe-
cution paths to provide information about triggers for malicious actions. Differ-
ential slicing [15] is able to find input and environment differences that lead to
a specific deviation in behavior. The deviation that is to be used as a starting
point, however, has to be identified manually. In contrast to these techniques,
Disarm is agnostic to the type of evasion methods used in malware, as well as to
the monitoring technologies employed. Nevertheless, evasive samples detected by
our system could be further processed with these tools to automatically identify
the employed evasion techniques.

7 Conclusion

Dynamic malware analysis systems are vulnerable to evasion from malicious
programs that detect the analysis sandbox. In fact, the Anubis DMAS has been
the target of a variety of evasion techniques over the years.

In this paper, we introduced Disarm, a system for detecting environment-
sensitive malware. By comparing the behavior of malware across multiple anal-
ysis sandboxes, Disarm can detect malware that evades analysis by detecting a
monitoring technology (e.g. emulation), as well as malware that relies on detect-
ing characteristics of a specific Windows environment that is used for analysis.
Furthermore, Disarm is compatible with essentially any in-the-box or out-of-
the-box monitoring technology. We introduced techniques for normalizing and
comparing behavior observed in different sandboxes, and proposed a scoring sys-
tem that uses behavior variations within a sandbox as well as between sandboxes
to accurately detect samples exhibiting semantically different behavior.

We evaluated Disarm against over 1,500 malware samples in four different
analysis sandboxes using two different monitoring technologies. As a result, we
discovered several new evasion techniques currently in use by malware. We will
apply these findings to our widely used Anubis service to prevent these attacks
in the future.

Acknowledgments. The research leading to these results has received funding
from the European Union Seventh Framework Programme under grant agree-
ment n. 257007 (SysSec), from the Prevention, Preparedness and Consequence
Management of Terrorism and other Security-related Risks Programme Euro-
pean Commission - Directorate-General Home Affairs (project i-Code), and from

Detecting Environment-Sensitive Malware 19

the Austrian Research Promotion Agency (FFG) under grant 820854 (TRUDIE).
This publication reflects the views only of the authors, and the Commission
cannot be held responsible for any use which may be made of the information
contained therein.

References

1. Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario, J.:
Automated Classification and Analysis of Internet Malware. In: Proceedings of the
10th International Symposium on Recent Advances in Intrusion Detection (RAID)
(2007)

2. Balzarotti, D., Cova, M., Karlberger, C., Kruegel, C., Kirda, E., Vigna, G.: Efficient
Detection of Split Personalities in Malware. In: Proceedings of the 17th Annual
Network and Distributed System Security Symposium (NDSS) (2010)

3. Bayer, U., Comparetti, P., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable,
Behavior-Based Malware Clustering. In: Proceedings of the 16th Annual Network
and Distributed System Security Symposium (NDSS) (2009)

4. Bayer, U., Habibi, I., Balzarotti, D., Kirda, E., Kruegel, C.: A View on Current
Malware Behaviors. In: 2nd USENIXWorkshop on Large-Scale Exploits and Emer-
gent Threats (LEET) (2009)

5. Bayer, U., Kirda, E., Kruegel, C.: Improving the Efficiency of Dynamic Malware
Analysis. In: Proceedings of the ACM Symposium on Applied Computing (SAC)
(2010)

6. Bayer, U., Kruegel, C., Kirda, E.: TTAnalyze: A Tool for Analyzing Malware.
In: Proceedings of the 15th European Institute for Computer Antivirus Research
(EICAR) Annual Conference (2006)

7. Bellard, F.: QEMU, a Fast and Portable Dynamic Translator. In: USENIX Annual
Technical Conference (2005)

8. Chen, X., Andersen, J., Mao, Z.M., Bailey, M., Nazario, J.: Towards an Under-
standing of Anti-Virtualization and Anti-Debugging Behavior in Modern Malware.
In: Proceedings of the 38th Annual IEEE International Conference on Dependable
Systems and Networks (DSN) (2008)

9. Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: Malware Analysis via Hardware
Virtualization Extensions. In: Proceedings of the ACM Conference on Computer
and Communications Security (CCS) (2008)

10. Ferrie, P.: Attacks on Virtual Machine Emulators. Tech. rep., Symantec Research
White Paper (2006)

11. Ferrie, P.: Attacks on More Virtual Machines (2007)
12. Garfinkel, T., Adams, K., Warfield, A., Franklin, J.: Compatibility is Not Trans-

parency: VMM Detection Myths and Realities. In: Proceedings of the 11th Work-
shop on Hot Topics in Operating Systems (HotOS-XI) (2007)

13. Hoglund, G., Butler, J.: Rootkits: Subverting the Windows kernel. Addison-Wesley
Professional (2005)

14. Jaccard, P.: The Distribution of Flora in the Alpine Zone. The New Phytologist
11(2) (1912)

15. Johnson, N.M., Caballero, J., Chen, K.Z., McCamant, S., Poosankam, P., Rey-
naud, D., Song, D.: Differential Slicing: Identifying Causal Execution Differences
for Security Applications. In: IEEE Symposium on Security and Privacy (2011)

20 Martina Lindorfer, Clemens Kolbitsch, and Paolo Milani Comparetti

16. Kamluk, V.: A black hat loses control. http://www.securelist.com/en/weblog?
weblogid=208187881 (2009)

17. Kang, M.G., Poosankam, P., Yin, H.: Renovo: A Hidden Code Extractor for Packed
Executables. In: ACM Workshop on Recurring Malcode (WORM) (2007)

18. Kang, M.G., Yin, H., Hanna, S., McCamant, S., Song, D.: Emulating Emulation-
Resistant Malware. In: Proceedings of the 2nd Workshop on Virtual Machine Se-
curity (VMSec) (2009)

19. Kleissner, P.: Antivirus Tracker. http://avtracker.info/ (2009)
20. Lau, B., Svajcer, V.: Measuring virtual machine detection in malware using DSD

tracer. Journal in Computer Virology 6(3) (2010)
21. Martignoni, L., Christodorescu, M., Jha, S.: OmniUnpack: Fast, Generic, and Safe

Unpacking of Malware. In: Proceedings of the Annual Computer Security Appli-
cations Conference (ACSAC) (2007)

22. Martignoni, L., Paleari, R., Bruschi, D.: A Framework for Behavior-Based Malware
Analysis in the Cloud. In: Proceedings of the 5th International Conference on
Information Systems Security (ICISS) (2009)

23. Moser, A., Kruegel, C., Kirda, E.: Exploring Multiple Execution Paths for Malware
Analysis. In: IEEE Symposium on Security and Privacy (2007)

24. Paleari, R., Martignoni, L., Passerini, E., Davidson, D., Fredrikson, M., Giffin, J.,
Jha, S.: Automatic Generation of Remediation Procedures for Malware Infections.
In: Proceedings of the 19th USENIX Conference on Security (2010)

25. Paleari, R., Martignoni, L., Roglia, G.F., Bruschi, D.: A fistful of red-pills: How
to automatically generate procedures to detect CPU emulators. In: Proceedings of
the 3rd USENIX Workshop on Offensive Technologies (WOOT) (2009)

26. Pek, G. and, B.B., L., B.: nEther: In-guest Detection of Out-of-the-guest Malware
Analyzers. In: ACM European Workshop on System Security (EUROSEC) (2011)

27. Perdisci, R., Lee, W., Feamster, N.: Behavioral Clustering of HTTP-Based Malware
and Signature Generation Using Malicious Network Traces. In: USENIX Confer-
ence on Networked Systems Design and Implementation (NSDI) (2010)

28. Raffetseder, T., Kruegel, C., Kirda, E.: Detecting System Emulators. In: Informa-
tion Security Conference (ISC) (2007)

29. Rutkowska, J.: Red Pill... or how to detect VMM using (almost) one CPU instruc-
tion. http://invisiblethings.org/papers/redpill.html (2004)

30. Stone-Gross, B., Moser, A., Kruegel, C., Almaroth, K., Kirda, E.: FIRE: FInding
Rogue nEtworks. In: Proceedings of the Annual Computer Security Applications
Conference (ACSAC) (2009)

31. Tan, C.K.: Defeating Kernel Native API Hookers by Direct Service Dispatch Table
Restoration. Tech. rep., SIG2 G-TEC Lab (2004)

32. The Honeynet Project: Know Your Enemy: Fast-Flux Service Networks. http:
//www.honeynet.org/papers/ff (2007)

33. Trinius, P., Willems, C., Holz, T., Rieck, K.: A Malware Instruction Set for
Behavior-Based Analysis. Tech. Rep. 07–2009, University of Mannheim (2009)

34. Vasudevan, A., Yerraballi, R.: Cobra: Fine-grained Malware Analysis using Stealth
Localized-executions. In: IEEE Symposium on Security and Privacy (2006)

35. Willems, C., Holz, T., Freiling, F.: Toward Automated Dynamic Malware Analysis
Using CWSandbox. IEEE Security and Privacy 5(2) (2007)

36. Yoshioka, K., Hosobuchi, Y., Orii, T., Matsumoto, T.: Your Sandbox is Blinded:
Impact of Decoy Injection to Public Malware Analysis Systems. Journal of Infor-
mation Processing 19 (2011)

