
What’s your major threat? On the differences
between the network behavior of targeted and

commodity malware
Enrico Mariconti, Jeremiah Onaolapo, Gordon Ross, and Gianluca Stringhini

University College London
e.mariconti@cs.ucl.ac.uk, j.onaolapo@cs.ucl.ac.uk,

g.ross@ucl.ac.uk, g.stringhini@ucl.ac.uk

Abstract—This work uses statistical classification techniques
to learn about the different network behavior patterns demon-
strated by targeted malware and generic malware. Targeted
malware is a recent type of threat, involving bespoke software
that has been created to target a specific victim. It is considered a
more dangerous threat than generic malware, because a targeted
attack can cause more serious damage to the victim. Our work
aims to automatically distinguish between the network activity
generated by the two types of malware, which then allows samples
of malware to be classified as being either targeted or generic.
For a network administrator, such knowledge can be important
because it assists to understand which threats require particular
attention. Because a network administrator usually manages
more than an alarm simultaneously, the aim of the work is
particularly relevant. We set up a sandbox and infected virtual
machines with malware, recording all resulting malware activity
on the network. Using the network packets produced by the
malware samples, we extract features to classify their behavior.
Before performing classification, we carefully analyze the features
and the dataset to study all their details and gain a deeper
understanding of the malware under study. Our use of statistical
classifiers is shown to give excellent results in some cases, where
we achieved an accuracy of almost 96% in distinguishing between
the two types of malware. We can conclude that the network
behaviors of the two types of malicious code are very different.

I. INTRODUCTION

Malware is a threat that continually requires new defenses
and mitigation strategies. The number of malware samples
is currently increasing: in 2014, a new malware sample was
released by attackers every 4 seconds and this trend continues
to increase exponentially [14]. Different families of malware
have different goals: some of them may try to damage the
infected machine or other devices connected to it, while others
may try to use the infected machine as part of an attack
against a third entity. Some of the threats are also more
critical than others for a network defender: for example, in
a corporate environment a ransomware that is infecting and
encrypting the hard disks of the infected machines is usually
much more immediately dangerous than a malware that sends
spam emails. These differences can be useful o those defenders
that are managing the network alarms when it is needed to
choose which threat to handle first.

In the past, attackers created malware to infect as many
machines as possible, however more recently a new trend

has emerged: the creation of software designed to target a
specific victim by using a certain vulnerability in the victim’s
system. One of the most famous examples is Stuxnet [23],
which exploited some zero-day vulnerabilities of the systems
to destroy centrifuges in Iranian nuclear enrichment facilities.
Allegedly this attack caused the postponement of the Iranian
nuclear program. The Stuxnet example is clear evidence of
how dangerous and costly a targeted attack can be for the
victims. In [7], Chien and O’Gorman analyze a targeted
attack on the chemistry industry sector and underline how
frequent these attacks are, and which goals drive these attack
campaigns.

Ideally, targeted attacks should be correctly detected and
promptly countered by the network defense system, but sys-
tems are often under attack by multiple malware threats at the
same time. Our goal is to analyze the network behavior of
malware samples to identify differences that allow a system
to recognize whether a specific attack is targeted or not. Our
aim is to verify whether it is possible to distinguish targeted
and generic malware using statistical analysis on their network
behavior. If multiple malware samples are active on a network,
but the system is able to recognize a targeted threat, it is
possible to prioritize cleanup choices to limit the damages to
the network.

We created a sandbox environment where malware samples
produced network traffic that we statistically analyzed by
extracting features, which were then used for classification.
We carried out an analysis and selection of features through
distribution studies, Cramer Von Mises tests and the use of
Principal Component Analysis (PCA) following meticulous
procedures to validate and justify the choices that can im-
pact the classification results. By using different statistical
classifiers and two mechanisms of k-fold cross validation we
reached 96% accuracy in the classification of the network
behaviors of the two malware types.

In summary, this paper makes the following contributions:
• We set up a sandbox that is able to run and monitor

up to 1,200 malware samples a day to look for relevant
malware network packets. The sandbox is able to work
autonomously for an entire day respecting the safety of
users by following the guidelines of previous studies such
as [28] and [20].



• We systematically approach the statistical phase by study-
ing the different features through distribution graphs,
Cramer Von Mises tests, Histograms, and PCA before
validating the findings of the statistical classifiers with
k-fold cross validation. We perform a statistical clas-
sification among more than one hundred samples per
type of malware reaching high values in the accuracy of
the identification. The procedure we follow as statistical
analysis justifies every experimental choice and can be
used as a standard for future work.

• We suggest that our classification framework allows the
two types of malware to be identified, and that this
approach increases the capability of network defenders
to respond to major threats when their systems are under
different attacks.

II. METHODOLOGY

In this section we explain the procedures applied to all
the different stages of the work. We start by explaining the
configuration of the sandbox in detail and the operations that
allowed us to infect Virtual Machines (VMs) by injecting
malware samples in Sections II-A, II-B, and II-C. Section II-E
explains the procedures that we applied to study the features
(section II-D), and the dataset (section III-A), while section
II-F shows which statistical classifiers, and which validation
methods we used.

A. The experiment infrastructure

We set up a sandbox infrastructure (Figure 1) that is able
to run 50 VMs at a time in the host-only environment created
using VirtualBox on Linux. To increase the efficiency of our
sandbox (reduce the number of evasion techniques a malware
can successfully use to identify the virtual environment), we
modified some basic parameters that malware samples often
check to detect virtual environments. The main ones are the
MAC address, the user name in the machine, and parameters
such as the RAM and hard disk size. Each virtual machine
downloads and executes a different malware sample from the
webserver. A VM is able to request only one sample per test.

The webserver sends malware to the VMs after receiving a
request from them. To avoid any double request (two malware
samples operating from the same machine) and to track which
malware produced specific network packets, the webserver
records in a file the combination of VM’s MAC address
and malware’s hash. Another service simulated in the host
machine is the mailserver. The mailserver is part of the security
measures taken into account to avoid risks coming from our
infrastructure; the router redirected all the SMTP packets to
the mailserver. A router manages all the connections. It uses
IPTables and the VirtualBox options to allow the connection
of the VMs to and from the Internet, the webserver, and the
redirection to the mailserver. The router also manages the
maximum bit rate of the connection for security restrictions.

Malware samples often try to recognize a virtual environ-
ment to avoid being studied, in case they detect the virtual
environment, the sample would not try to do anything. Re-
searchers have to modify settings to block the attempts a

Fig. 1: Sandbox infrastructure: the host machine simulates a
network of VMs, a webserver managing the malware distribu-
tion, a mailserver to redirect possible spam campaigns from the
infected VMs, and a router that allows the connection among
the different internal machines and with the Internet.

sample makes to evade. To maximize the efficiency of our
environment, we used a tool called Pafish that indicates which
can be the VM characteristics that will allow a malware sample
to recognize it.

B. Security restrictions and ethical constraints

While the environment has some similarities with Bot-
lab [20], the security restrictions applied to the environment
follow the guidelines presented in [28]. The main restrictions
that we operated are the limitations in time and rate, and the
redirection of the e-mails. A sandbox that is connected to
the Internet is allowed to communicate with Command and
Control (C&C) servers or to operate attacks, therefore it is
necessary to limit the damage it can do.

The rate limit is a good countermeasure to Denial of Service
attacks: 50 VMs sharing a limited amount of bandwidth (1Mb
per second) do not allow one of them to perpetrate an efficient
DoS attack. The redirection of all the SMTP packets (ports
25, 443, 2525, 3535, 10024, 10025) prevents the effectiveness
of all the possible malicious mail campaigns because instead
of targeting the victims, all those network packets arrived to
our mailserver. This restriction can also be a limitation in
studying some of the samples because some of them might
communicate with remote attackers using these ports. Another
limitation is the time limit; it is due to the need of avoiding
long and advanced attacks against people starting from the
virtual environment; many attacks are coordinated from C&C
servers, setting up instructions to let the infected machines
operate for hours against the victims. Our VMs lifetime was
15 minutes.



These types of experiments do not involve sensitive user
data and the application of the mentioned restrictions help
to ensure that malware studies do not help cybercriminals
by actively participating in malicious activity. An active and
effective participation by our infected machines would have
been reported to law enforcement agencies.

C. The experiment timeline

The experiment is divided in 24 tests of almost one hour
each. Each test had a tcpdump instruction to record the
network packets into a pcap file, and a different webserver
managing different malware samples. The test starts by acti-
vating the tcpdump process, the webserver, and the mailserver
services.

After that, the VMs are created and started. In each VM,
a few scripts are executed: the IP address is immediately set
up by looking at the assigned MAC address; after a certain
timeout the VM sends a packet to the webserver to ask for
the malware sample. Once the download is finished, the VM
executes the sample.

The tests run 50 VMs at a time and last for 55 minutes; each
experiment runs 24 tests therefore 1,200 malware samples run
each day. All the pcap files collected during the tests have
to be filtered from system packets and divided (by using the
MAC address) in order to recognise which malware produced
which traffic. To match malware samples and MAC addresses,
we use the file produced by the webserver of each test with
all the combinations malware hash-MAC address to assign the
pcap file to the correct malware.

We take into consideration only the pcap files containing at
least one answer from a destination; the presence of several
UDP or ICMP packets is still accepted while the use of DNS
packets without answers is not. From the pcap files we extract
the features explained in the following section to analyze
their efficiency with the samples’ values and use the statistical
classifiers for the identification of the samples.

D. Features

Previous work already used feature extraction and statistical
classification for malware detection, for example [16]. In this
work we tried to mix features at a different level using some
commonly used features and some others that were not used
in malware classification before, such as the Markov Chains
probabilities of transition between network protocols.

We define as flow the set of packets having the same IP
addresses, TCP/UDP ports (source and destination can be
swapped in addresses and ports), and same protocol. Some
of the features are flow oriented: they are calculated on each
flow of the block (the entire pcap file related to the sample)
and then converted to the block value (for instance a mean
value will be the average among all the mean flow values).
By converting the features from flow to block it has been
possible to use block and flow features together.

The features can be divided into three families: network
features, application features, and behavioral features. The
network features look at parameters related to the transport
and network levels while the application features extract

parameters related to the highest level of the stack. The
behavioral features look at parameters that are extracted from
the mentioned levels, but they are trying to abstract some
concepts from the recorded packets.

The network features are listed in Table I. These features are
oriented to the flow, which means that it has been necessary
to convert the list of values related to the flows to a “block
value.” These features are quite straight forward and they do
not need particular explanations. The anomalies in values such
as the TCP flags may be useful to identify attacks such as SYN
floods or port scans that the malware can generate.

The application features (Table II) need more explanation.
As the table shows, some of the features are oriented to
the flows and some to the block. The flows are the sets of
packets with the same source and destination IP addresses and
ports, and the same protocol field that can be found in the IP
packet header. A block is formed by all the packets produced
by the sample during that session. The encryption features
are used because malware often use an encrypted payload
in the packets to mask their activity and communication. To
understand if the payload is encrypted or not, we derived it
from the entropy features as shown in [15] and applied in
[12] and [27]. Olivain and Goubault-Larrecq explain in [15]
how to calculate entropy using the frequencies of the possible
bytes (in our case) that are in the packet. They also explain in
detail how to use this information to understand if the packet
is encrypted or not using a threshold and some adaptations of
the entropy value due to the length of the packets. The “words
in application” feature evaluates the presence of at least three
letters by decoding the payload in ASCII characters; if the used
protocol is SMTP, the words are compared with a blacklist in
order to identify possible spam words that are considered in
the “mail keywords” feature.

The last family of features are the behavioral features (Table
III). Only two of them are flow oriented. One of the features
we want to explain in detail is the GeoLocation one: we
evaluated the destination IP of all the communication operated
by the malware. To represent this information as a feature, we
took into account 26 countries all over the world. Additionally,
we used three clusters to include also countries that are not
part of the 26 taken into account (other EU countries, other
Asian countries, and Other), and the local address for a total
of 30 possible destinations.

Markov Chains are a model used to evaluate the switch
between two possible states of a system; every connection
between two states is associated with the probability of
transition between the two states. We used the Markov Chain
probabilities on the network protocol-ports sequence to eval-
uate if the malware is repeating certain transitions between
types of packets; we evaluated the transition between 18
specific protocols (among network level protocols such as
ICMP and application ones such as DNS) and three clusters
(other TCP, other UDP, and other network level) for a total
of 21 protocols, and 441 probabilities (each one would be a
feature). For example, we checked every HTTP packet and
their following packet of the network traffic produced by a
malware sample. We then filled a vector with the number of
transitions between the HTTP protocol and each of the 21



possibilities we considered (also HTTP to HTTP is considered
as a transition). To have the probabilities of transition from
a state (the HTTP packet) to another (the packet that is
following), we just need to normalize the transitions vector
we created to make the sum of the components being one.

Features Oriented to
Number of Packets Flow
Total bytes per flow Flow
First Length Flow
Max Length Flow
Min Length Flow
Mean Length Flow
Std Deviation Length Flow
Delta Time Flow
Std Deviation Delta Flow
Flow Duration Flow
Number of Syn flags Flow
Number of Res flags Flow

TABLE I: List of the network features and their orientation.

Features Oriented to
Encryption Flow
Percentage Encrypted Flow
Mean Entropy Flow
Max Entropy Flow
Min Entropy Flow
Std Entropy Flow
Words in Application Flow
Mail Keywords Flow
Number of used Protocols Block
More Used Protocol Block
Percentage More Used Block
Less Used Protocol Block
Percentage Less Used Block

TABLE II: List of the application features and their orienta-
tion.

Features Oriented to
Number of C&C Servers Block
IP Geolocation Flow
Markov Chains Block
Contacted IP IN Block
Contacted IP OUT Block
Contacted Domains Block
DomainsIPs Block
TCPUDP Packets Block
TCPUDP Flows Block
Percentage of Flows started by the sample Block
Percentage IP Spoofing Flow

TABLE III: List of the behavioral features and their orienta-
tion.

E. Analysis procedure

Before classifying the samples, it is necessary to exhaus-
tively understand the characteristics of the dataset (section
III-A) and of the features we extract from the network packets.
We start by plotting density functions and histograms of
the sample distributions for each feature to understand if
any of the feature values were biased and to graphically
observe if there are differences between the distributions of
targeted and commodity samples. To validate this observation
we run a Cramer Von Mises test [11] (Anderson version [1])
between the distributions of the two samples among all the
features. As a result of this test, the p-value tells if the two
populations are from different distributions or not. If the two
populations are from different distributions, it is more likely
to correctly identify samples of the two classes by using
statistical classifiers.

The Markov chains features we used were 441; several of
them were not relevant values because all the samples were
producing 0 as the value for that feature; to maintain a good
cost-efficiency ratio of the classifiers we apply a Principal
Component Analysis (PCA [21]) to reduce the quantity of
features to manage. The last analysis we operate before using
the statistical classification is a hierarchical clustering [34];
the hierarchical clustering creates a tree graph that gives an
idea if there could be a good separation of the classes we
want to identify or if there will be a large number of wrong
classifications.

F. Classification phase

Classification is operated by training more than one classi-
fier on the features extracted for each sample. To validate all
the attempts, we used two different k-fold cross validations
(k=5 and k=10); the classifiers that we apply are random
forests and two different kinds of K-nearest neighbors (K=1
and K=3). We used the whole dataset in a first attempt while
we continued using a filtered set in which the exchanged
network packets are at least 15 per each sample. We repeated
the classification as in the first attempt and tried again by
using as features only the PCA components derived from the
Markov chains.

Random forest [5] combines several tree predictors such that
each tree depends on the values given by a random vector, and
the vectors must be identically distributed. All the trees give a
classification prediction and a majority rule (or in some cases
an average) among the predictions is applied to decide the
final classification prediction.

K nearest neighbors [13] uses the concept of distance to
predict which class the test sample is part of. It calculates
which are the K (in our case one and three) nearest training
samples in the features’ space for each test sample. After
it predicts the class of the test sample by looking at which
class has the highest number of training samples in the K
nearest ones. To avoid problems of two classes with the highest
number of training samples in K, an odd number is used; in
our case where there are only two classes, the conflict cannot
happen with K=1 and K=3.



III. ANALYSIS OF THE DATA

A. Dataset

The dataset is composed of the features extracted from the
execution of the targeted and commodity malware samples.
For the generic malware samples we used executable files
from virusshare.com archives, while for the targeted binaries
a dataset collected at previous work [4]. Le Blonde et al. in
[4] collected and analyzed targeted attacks against a human-
rights Non-Governmental Organization representing an ethnic
minority living in China. In particular, they analyzed the
social engineering techniques, attack vectors, and malware
attachments employed in malicious emails.

The malware samples that produced network traffic follow-
ing the criteria mentioned in section II-C are 109 generic
samples and 103 targeted ones. The filtered dataset excluded
nine generic samples and 3 targeted resulting in 100 samples
per class. We used the complete dataset in the first clas-
sification attempt and the second one in the further tries1.
The filtered dataset does not contain malware samples that
produce minimal traffic on the network. This may be due
to a sample that is an old version and it is not finding any
C&C server active anymore from the list it uses. Since such
malware samples receive no orders from their C&C servers,
their behavior is the same for generic and targeted samples.

B. Distribution of the samples

This section shows the differences and the similarities
between the two populations of samples. These analysis are
useful to select only the features that can be relevant and
discard those that do not show differences among the samples
of the two classes. The first analysis was made by checking the
distributions of targeted and commodity samples (Figure 2).
We used a logarithmic scale on the X axis to allow a better
visualization and we observed how the two populations are
distributed over the possible values of the number of packets
that are exchanged from the malware. This graph shows how
the two populations seem to be from different distributions,
while other features such as the “contacted domains” in
Figure 3 have populations that seem to derive from the same
distribution.

The GeoLocation data needs more explanation: the his-
tograms in Figure 4 and 5 are really different. The first one
shows the geolocation of IP destinations applied to commodity
malware; there are several contacted countries in a relevant
way: the most contacted are US and other European (cluster in-
volving most of Eastern Europe excluding Russia) IP addresses
but relevant values come from China and other countries such
as Germany and Russia. Another relevant value is given by
the local (inside the Virtual Network) IP addresses that are
contacted. On the other hand (Figure 5), Targeted malware
samples mainly contact Chinese IP addresses. This, however,
could be a bias of the targeted dataset: as explained in Section
III-A the dataset derives from a previous work [4] that explic-
itly studied targeted malware created in China which attacked

1The network dump files collected as part of these experiments are available
at http://dx.doi.org/10.14324/000.ds.1500878.

computers of employees of a human-rights Non-Governmental
Organization representing a ethnic minority living in China.
Therefore, it is normal that the malicious samples are trying
to contact Chinese IP addresses. This bias in the dataset could
dramatically affect the classification, therefore we excluded
the geolocation features from the next steps of the work.

C. Statistical differences in distributions

To make the observations from the previous section more
rigorous, we applied the two-sample Cramer Von Mises
Test [11] to compare the distribution of each feature on the
targeted and commodity malware data sets. For each feature,
we computed the test statistic, and took a p-value of less
than 0.01 as being evidence that the feature had a different
distribution for targeted malware, and would hence be useful
for classification purposes. P values greater than 0.01 were
taken as evidence that the feature would not be useful, either
because its distribution did not vary between the two classes
of malware, or because the difference was not large enough
to be detectable given the sample size that we had.

Some features which were found not to be useful were
the mean length of the packets, the quantity of contacted IP
addresses outside the local network and the second component
of the PCA (section III-D) applied to the Markov chains
probabilities. These features have hence been discarded except
for the PCA component in the experiments of Section IV-C.
However other features seemed to be important for determin-
ing differences between the packets produced from the types of
malware; the p values of some tests, such as the one related to
the delta mean feature (average of inter-arrival times between
packets), have significant values (p value =0.001), but not as
far from the threshold (0.01) as some others. The total bytes
feature’s p value is 5.6 × 10−8, and the “first length of the
packet” p value is 1.2×10−9; the network level features are not
the only ones with significant values, for example the “most
used protocol” p value is 2.1×10−4 and this is an application
feature.

An important consideration has to be given to the compo-
nents derived from the Markov chains features by using the
PCA: the second component has a p value that is not signifi-
cant while the first component (the p value is 3.6×10−8), the
third one (p value= 7.4× 10−4), and the fourth one (p value=
1.1 × 10−4) have significant values. We believe it is because
PCA is an unsupervised features selection algorithm, therefore
the second component is important to highlight the samples
distribution but not for identifying the two classes among the
components’ space.

D. Principal Component Analysis

Principal Component Analysis (PCA [21]) is a dimension
reduction technique that allows a large number of features to
be summarized by a smaller number of features, projected into
a lower dimensional space. We have already mentioned the use
of PCA to select a few components, able to represent most
of the information given by the 441 features, describing the
Markov chains probabilities of transition from a certain packet
to another. The quantity of variance (Figure 6) taken into

http://dx.doi.org/10.14324/000.ds.1500878


Fig. 2: The distribution of targeted and commodity malware
with respect to the values of the “Number of Packets” feature.
On the X axis we used a log scale; it is possible to observe
that the two distributions seem to be different because while
targeted samples are more concentrated around a mean value,
the values of the commodity samples seem to be more
distributed.

Fig. 3: The distribution of targeted and commodity malware
with respect to the values of the “Number of Contacted
Domains” feature. On the X axis we used a log scale; it
is possible to observe that the two distributions seem to be
similar because the slopes of the lines change in the same
points of the two functions.

Fig. 4: The distribution over the countries of the IP addresses
contacted by commodity malware. The two highest quantities
are US and other European (cluster) IP addresses, but there
still is a relevant quantity of IP addresses from China,
other Asian countries (cluster) or IP addresses from the
virtual network. German and Russian IP addresses are often
contacted as well.

Fig. 5: The distribution over the countries of the IP addresses
contacted by targeted malware. The quantity of Chinese IP
addresses that are contacted is double the others. Other Asian
cluster has a relevant quantity of contacted IP addresses and
US has a minor quantity as well.

account by the first four components is already 80% and each
feature contains at least 10% of the variance. For this reason,
to avoid a dramatic increase of the classifiers’ computational
costs we used only this set of components for the next steps.
The p values shown at the end of the previous section highlight
how the PCA components can be a significant help in the
statistical classification. Markov Chains are a stateless tool
(they have no memory), therefore the values are based only
on the current state (current packet) and are not influenced by
the previous ones. This characteristic of the tool will allow us
to give a hint about a possible comparison between Markov
chains and signature-based intrusion detection systems.

E. Hierarchical clustering

The last analysis step is hierarchical clustering. Hierarchical
clustering is used to have a general idea if the classification
may lead to a good separation between the two classes or not.

Unfortunately it has not been possible to report the hierarchical
clustering tree because of its very large dimensions. The height
values of the graph indicate a dissimilarity degree, the higher
the value where the links of two samples get together into the
same root, the more likely the classification will be correct.
The samples that are close to others are from a common route
with a low height value. We drew the hierarchical clustering
tree by using all the features (including the four PCA ones)
and without the PCA features. The two trees are identical.

In Section III-C we commented on the p-values saying that
three out of four PCA components have significant p values
but that they are not as low as a few other features. If the
two hierarchical clustering trees are identical, the algorithm
evaluates the PCA components as much less important than
other significant features. The trees show that targeted samples
are mostly in big blocks in the middle of the graphs while most
of the commodity samples stay on the sides of the graph; only



Random
Forests 1-nn 3-nn

Accuracy 0.956 0.780 0.784
Precision 0.911 0.762 0.732
Recall 0.905 0.792 0.851
F-Measure 0.906 0.775 0.785

TABLE IV: 5-fold cross validation results of the statistical
classifiers. The statistical classification involves the entire
dataset and all the features.

Random
Forests 1-nn 3-nn

Accuracy 0.951 0.789 0.795
Precision 0.901 0.773 0.739
Recall 0.901 0.786 0.843
F-Measure 0.897 0.771 0.782

TABLE V: 10-fold cross validation results of the statistical
classifiers. The statistical classification involves the entire
dataset and all the features.

Fig. 6: The cumulative sum of PCA components’ variance
quantity. The first component already contains more than 30%
of the total variance, four components take into account 80%
of the information given by the 441 Markov chains features
the PCA is applied to.

a few of them are in positions next to samples of the other
class. The analysis of this section let us expect good results
from the classification phase.

IV. STATISTICAL EVALUATION

As explained in the methodology Section (II-F), we run
the statistical classification by using Random Forests and
two different K Nearest Neighbors under two k-fold cross
validation algorithms. We present the following tables about
the average values of the cross validation results in this section.

The evaluation parameters are accuracy, precision, recall and
F-measure. Accuracy and F-measure are two parameters that
try to give an overall situation: accuracy is a weighted mean
of the correct identifications (true positives and true negatives)
while F-measure is the harmonic mean between precision and
recall. Precision shows the ratio between the correct positive
identifications and the total number of identifications while
recall considers how effective is the positive samples identi-
fication over the entire positive population. As we consider
targeted malware as more dangerous, the positive samples are
the targeted ones while the negative samples are the generic
ones.

A. Complete dataset classification

The complete dataset is the set of all the samples that
produced enough traffic to be considered; they are 109 generic

samples and 103 targeted ones. Targeted samples are rare
and it is not easy to have access to them; therefore there
is no reason in using a large database of generic samples
when the targeted one cannot be of the same dimensions.
Short communications will be filtered in the next experiments
reducing this set to a filtered dataset. Tables IV and V
show the results of the statistical classifiers applied to the
complete dataset. Using 5-fold cross validation, the random
forests classifier reaches really high values: an accuracy of
95.6% means that the system can be trusted even if 90.5%
recall indicates that some of the targeted samples are still
missed. While it is not possible to clearly state a difference
between the two Nearest Neighbors classifiers’ results, we can
say that they are not effective as the random forests. The
values in Tables IV and V show an overall efficiency that
is similar between the two K-nn classifiers because accuracy
is 78% and 78.4% and F-measure is 77.5% and 78.5%. They
reached it through different paths: considering the values of
precision (76.2% and 73.2%) and recall (79.2% and 85.1%),
it is possible to say that 3-nn tends to recognize the targeted
samples better (higher recall) while 1-nn tends to have less
false positives. This diversity is probably due to the difference
in distributions highlighted in Section III-B: targeted samples
are more concentrated in one area than commodity samples.
When it comes to classification, if the test sample is in the
area where targeted samples are concentrated, it will be more
possible to find at least two targeted training samples and label
the test sample as targeted more than as generic. The 10-fold
cross validation results are similar to the 5-fold ones, the small
difference is not relevant.

B. Filtered dataset classification

We repeated the statistical classification by using the filtered
dataset. As already mentioned, this dataset does not contain the
samples that produce irrelevant quantities of traffic; we applied
this filter because a few packets do not describe the malware
activity. The new dataset has nine commodity samples and
three targeted samples less than the complete dataset. The
results are slightly different: random forests slightly increases
its efficiency, while the two K-nn fail the correct identification
of more samples than in the previous classification. With
respect to the previous dataset, the differences are not relevant,
but, since the databases did not change a lot, we did not expect
really different results. Random forests increases its recall by
more than 3%, suggesting that those samples we filtered were
part of the wrong classifications. Both K-nn algorithms had a
decrease of precision, especially 1-nn. The filter affected more



Random
Forests 1-nn 3-nn

Accuracy 0.964 0.761 0.769
Precision 0.893 0.749 0.728
Recall 0.944 0.781 0.852
F-Measure 0.914 0.762 0.782

TABLE VI: 5-fold cross validation results of the statistical
classifiers. The statistical classification involves the filtered
dataset and all the features.

Random
Forests 1-nn 3-nn

Accuracy 0.962 0.787 0.789
Precision 0.905 0.777 0.734
Recall 0.933 0.782 0.859
F-Measure 0.912 0.768 0.785

TABLE VII: 10-fold cross validation results of the statistical
classifiers. The statistical classification involves the filtered
dataset and all the features.

Random
Forests 1-nn 3-nn

Accuracy 0.878 0.831 0.806
Precision 0.798 0.783 0.774
Recall 0.907 0.907 0.8572
F-Measure 0.846 0.838 0.804

TABLE VIII: 5-fold cross validation results of the statistical
classifiers.The statistical classification involves the filtered
dataset and only the PCA components derived from the
Markov chains probabilities.

Random
Forests 1-nn 3-nn

Accuracy 0.887 0.782 0.837
Precision 0.810 0.770 0.794
Recall 0.912 0.790 0.921
F-Measure 0.848 0.772 0.839

TABLE IX: 10-fold cross validation results of the statisti-
cal classifiers. The statistical classification involving filtered
dataset and only the PCA components derived from the
Markov chains probabilities.

the number of generic samples than the targeted one arriving to
the same number for the two types of samples. That probably
is the reason why there is a disadvantage for negative samples
classification with respect with the previous tests.

C. PCA-only classification

The last experiment with statistical classifiers (Tables VIII
and IX) was conducted using a limited number of features: we
used only the four PCA components derived from the Markov
chains probabilities. Since we are using features related to the
sequences of used packets, it is a kind of defense that could be
considered similar to signature-based systems; these systems
check certain sequences of packets to recognize malicious
activity. The random forests classifier still shows a good
accuracy (87.8% and 88.7%) but, as expected, it does not give
as high values as in the previous cases: the use of only 4
features, without taking into account the others, is not the
optimal case for random forests. It is important to notice that
it is the precision that decreases dramatically while recall is
still about 90%, meaning that this set of features gives much
more false positives than the complete set.

K-nn increases its accuracy by using the restricted set of
features on the filtered dataset. The higher value is due to the
basic concept K-nn uses: the distance between points; when
a high number of features is used, we are working on a big
number of dimensions in the feature space and the concept
of distance is not straightforward because of scaling issues
among variables. K-nn is more efficient in this classification
phase because there are only four features (four dimensions);
the results of 1-nn are comparable with random forests’ ones
even if the accuracy is still a bit lower than random forests’
accuracy.

It is interesting to notice that this is the only case where 1-
nn results change in a relevant way between the two cross
validation procedures; this is due to a great difference in

the recall value (11.7%). The decrease in targeted samples
identification can be explained only with the fact that the
PCA transformation may have distributed some commodity
samples in the region where more targeted samples were, thus
the presence of a few more training samples in the 10 fold
cross validation strongly modified the efficiency of 1-nn.

V. DISCUSSION

A. Results

The results show that there is the opportunity of distin-
guishing the network packets generated by targeted malware
from those generated by commodity malware using statistical
classifiers. An accuracy of over 95% shows the almost total
separation between the samples of the two classes. Many
insights of the analysis section have been confirmed by the
evaluation section and we believe that this work can be
a starting point in the automatic evaluation of priorities in
malware mitigation. The continuous update of the dataset
and the separation into malware families may be important
factors to achieve higher accuracy. Network administrators
may apply this work to decide which alarm has to be taken
into account with higher priority; the different opportunities
in tuning training set and statistical classifiers can lead to
customized options in order to enhance the defenses basing
the system on each single network where it is used.

Analyzing the steps explained in Section III, it is possible to
notice that the more interesting and useful features are oriented
to the flow, except for the Markov chains probabilities. This
means that a more detailed study on the flow analysis can pro-
vide even more accurate results in the separation of the types
of malware than this work (that already reached important
values).

In the evaluation section we show experiments taking into
account only the Markov Chains information as features.
We explicitly refer to the similarity between the mechanism



of this memoryless tool and the signature based approach;
the accuracy reached with these features (Tables VIII and
IX) is high considered the small amount of features and,
as a consequence, of computational cost. This result places
important considerations on how effective these tools can be
when tuned in an accurate way, and if they can be more robust
than similar defensive mechanisms. It is important to observe
that, even if the p values of the Cramer Von Mises test were
not the lowest ones, Random Forests reaches an accuracy of
almost 90% using these features alone. These results are less
than the previous ones, but still relevant.

B. Limitations

This work applied strict experimental and analysis proce-
dures to avoid any possible biased or unreliable result. For
this reason, the limitations are mostly due to restrictions that
did not allow to get higher accuracy but those limitations did
not affect the validity of the work.

One of the limitations is due to the restrictions that the sand-
box had for the safety of Internet users: the redirection of the
SMTP packets did not allow us to completely study malware
samples that were using that protocol. Other restrictions might
have affected some of the features limiting their efficiency but
not biasing the results; for instance the VM life limit may not
allow us to observe some particular malware behavior, but it
would limit the accuracy of the system and not the reliability.

The other main limitation was the bias in the geolocation
features; the targeted dataset is based on malware samples
created for only one targeted campaign, therefore there was
a strong bias in which IP addresses were contacted. It was
necessary to ignore the geolocation features when we used
the classifiers, turning down another tool able to increase the
accuracy of the system.

VI. RELATED WORK

Cybercriminals created malware samples since the 80’s,
the first were viruses [10], but the evolution brought more
advanced and powerful attacks such as those operated by
botnets [22]. While the first attackers were penetrating and in-
fecting systems for fun or to show their skills, malware became
a profitable service in the last decade. Botnets have been used
to send spam [32] or perform powerful distributed denial of
service (DDoS) attacks and through the years countermeasures
and mitigation methods have been found on single issues such
as, for instance, [6] for DDoS or [17] for bot infection
detection or [31] where researchers explained how they took
down the Torpig botnet. Botnets activity mitigation efforts
are good examples for defenses created to detect and block
malware samples. Modern ways to study botnets go through
active probing, as explained in [9], infiltrating a machine into
the botnet network [8] [30]; another attempt done in previous
work is a blacklisting activity explained in [33].

Before the implementation of mitigation techniques like the
cited ones, the aforementioned attacks have been successful
in several cases, just by trying to do as much damage as
possible to the unlucky companies or private users that have
been infected.

The difference that distinguished the successive generation
of malware has been the target: instead of attacking randomly
anybody, the target has become a specific victim, attacked by
using vulnerabilities of the victim’s system for the profit of
the victim’s adversaries. These are the targeted malware [4].
If a targeted malware is attacking a certain target (company,
organization, or country), it has to intervene rapidly in order
to limit the damages; being able to distinguish the type of
malware that is attacking represents an asset useful to increase
the efficiency of the security systems. The delicate tasks the
targeted malware has, request it to hide in the processes
limiting its acts, to operate without being noticed almost until
the achievement of its goal. This requirement is translated
in few light operations using the processors of the infected
computers, while only the essential packets on the Internet
are exchanged to hide them among the normal network user
activity.

Another key aspect to investigate malware is understanding
their behavior. This work focuses on the network behavior
of malware, when they have to communicate with a computer
outside the network like C&C communications, and the reason
of these exchanges. Previous work that focused on other topics
of malware network behavior have already been done about
honeypots [3] or the correlation between malicious activity
and previous instructions from a C&C server [16] [35]. A kind
of communication is represented by the packets needed for a
Denial of Service (DoS) attack; it is important to underline that
these packets are different from the ones exchanged between
a spyware and its master about the sensitive data on the
infected machine. There is a long list of possible malware
behaviors and they correspond to different network packets
on the Internet; as previously explained, the presence of a
targeted malware inside the network is a high threat, and being
able to distinguish which malware is operating on the network
can be particularly important. Malware identification on a
company network can be done by using different security tools
with different tasks: a peripheral firewall can already filter
those packets coming from a blacklisted IP address, whereas
antivirus software is able to detect in several ways suspicious
code, and Intrusion Detection Systems (IDSs) identify patterns
or anomalies in the traffic of packets that pass from their node.

A detailed overview of the different detection techniques,
characteristics, and methods of IDSs has been given by [29],
and the focus of this work is in those IDSs that practice misuse
detection on the network. As already mentioned, machine
learning has been already used in other security studies as
[16] and [17] on botnets or [2] [18] [19] [26] on different
DNS issues. In two old studies where it was used on IDSs
[24] and [25], but the application of statistical classifiers to
such a specific and new problem is currently missed. In our
work we did not limit the use of statistics to basic analysis
and machine learning applications as it is usually done, but we
added several steps to understand the characteristics of each
feature and their importance during the experiments.

VII. CONCLUSIONS

This study analyzed the opportunity of identifying network
traffic produced by targeted malware, distinguishing it from



the one produced by generic malware. This analysis gives an
opportunity to perform prioritization choices to enhance the
defenses against the major threats to networks.

We set up a sandbox to collect malware network traffic from
the samples; from the recorded packets we extracted several
features and, after a meticulous analysis, we applied statistical
classifiers to different sets of samples and features. During the
analysis we tested the differences between the distributions of
the two populations by using graphs and Cramer Von Mises
tests. After further analysis by using hierarchical clustering, we
applied statistical classifiers to the extracted features reaching
96% accuracy with the Random Forests classifier. The statis-
tical tests indicate the possibility to separate network packets
generated by targeted malware samples from generic samples
ones.

We executed other tests involving the four PCA features;
the tests show a good accuracy from this restricted set of
features even if the analysis phase indicated other features as
the most effective. The results of this section open interesting
possibilities in the identification of malicious activities through
modeling the sequences of actions.

Another important aspect of this work is the applied
methodology: to study and validate all the aspects of the
dataset, the features, and the classifier results we used a careful
procedure that can be applied to several problems where
complicated distributions of samples have to be evaluated and
classified.

This work opens the scenario of prioritization choices
between types of malware to evaluate other aspects of this
area, for instance in incident response.

VIII. ACKNOWLEDGMENTS

We wish to thank the anonymous reviewers for their com-
ments. This work was funded by the EPSRC under grant
number N008448. Enrico Mariconti was funded by the EPSRC
under grant 1490017, while Jeremiah Onaolapo was supported
by the Petroleum Technology Development Fund (PTDF),
Nigeria.

REFERENCES

[1] ANDERSON, T., AND DARLING, D. Asymptotic theory of certain
’goodness of fit’ criteria based on stochastic processes. Annals of
Mathematical Statistics (1952).

[2] ANTONAKAKIS, M., PERDISCI, R., DAGON, D., LEE, W., AND FEAM-
STER, N. Building a Dynamic Reputation System for DNS. In USENIX
Security Symposium (2010).

[3] BALZAROTTI, D., COVA, M., KARLBERGER, C., KRUEGEL, C., EN-
GIN, K., AND VIGNA, G. Efficient detection of split personalities in
malware. In Symposium on Network and Distributed System Security
(NDSS) (2010).

[4] BLOND, S. L., URITESC, A., GILBERT, C., CHUA, Z., SAXENA, P.,
AND KIRDA, E. A look at targeted attacks through the lense of an
NGO. In USENIX Security Symposium (2014).

[5] BREIMAN, L. Random forests. Machine Learning 45 (2001).
[6] BUSCHER, A., AND HOLZ, T. Tracking DDoS attacks: Insights into the

business of disrupting the web. In USENIX Workshop on Large-Scale
Exploits and Emergent Threats (LEET) (2012).

[7] CHIEN, ERIC AND O’GORMAN, GAVIN. The Nitro Attacks.
http://www.symantec.com/content/en/us/enterprise/media/security
response/whitepapers/the nitro attacks.pdf, 2011.

[8] CHO, C., CABALLERO, J., GRIER, C., PAXSON, V., AND SONG, D.
Insights from the inside: A view of botnet management from infiltration.
In USENIX Workshop on Large-Scale Exploits and Emergent Threats
(LEET) (2010).

[9] CHO, C. Y., BABICH, D., AND SONG, D. Inference and Analysis of
Formal Models of Botnet Command and Control Protocols. In ACM
Conference on Computer and Communications Security (CCS) (2010).

[10] COHEN, F. Computer viruses: theory and experiments. Computers &
security 6 (1987), 22–35.

[11] CRAMÈR, H. On the composition of elementary errors. Skandinavisk
Aktuarie- tidskrift (1928).

[12] DORFINGER, P., PANHOLZER, G., TRAMMELL, G., AND PEPE, T.
Entropy-based traffic filtering to support real-time Skype detection. In
International Wireless Communications and Mobile Computing Confer-
ence (2010).

[13] FIX, E., AND JR, J. H. Discriminatory analysis, nonparametric discrim-
ination. USAF School of Aviation Medivine, Randolph Field 4 (1951).

[14] GDATA LABS. Malware Report. https://public.gdatasoftware.com/
Presse/Publikationen/Malware Reports/GData PCMWR H2 2014
EN v1.pdf, 2014.

[15] GOUBAULT-LARRECQ, JEAN AND OLIVAIN, JULIEN. Detecting sub-
verted cryptographic protocols by entropy checking. Laboratoire Specifi-
cation et Verification. http://www.lsv.ens-cachan.fr/Publis/RAPPORTS
LSV/PDF/rr-lsv-2006-13.pdf, 2006.

[16] GU, G., PERDISCI, R., ZHANG, J., AND LEE, W. BotMiner: Clustering
Analysis of Network Traffic for Protocol-and Structure-Independent
Botnet Detection. In USENIX Security Symposium (2008).

[17] GU, G., PORRAS, P. A., YEGNESWARAN, V., FONG, M. W., AND
LEE, W. BotHunter: Detecting Malware Infection Through IDS-Driven
Dialog Correlation. In USENIX Security Symposium (2007).

[18] HOLZ, T., GORECKI, C., RIECK, K., AND FREILING, F. Measuring
and detecting fast-flux service networks. In Symposium on Network and
Distributed System Security (NDSS) (2008).

[19] HU, X., KNYSZ, M., AND SHIN, K. Rb-seeker: Auto-detection of
redirection botnets. In Symposium on Network and Distributed System
Security (NDSS) (2009).

[20] JOHN, J. P., MOSHCHUK, A., GRIBBLE, S. D., AND KRISHNA-
MURTHY, A. Studying Spamming Botnets Using Botlab. In USENIX
Symposium on Networked Systems Design and Implementation (NSDI)
(2009).

[21] JOLLIFFE, I. Principal Component Analysis. John Wiley & Sons, Ltd,
2002.

[22] KREIBICH, C., KANICH, C., LEVCHENKO, K., ENRIGHT, B.,
VOELKER, G. M., PAXSON, V., AND SAVAGE, S. Spamcraft: An inside
look at spam campaign orchestration. In USENIX Workshop on Large-
Scale Exploits and Emergent Threats (LEET) (2009).

[23] LANGNER, RALPH. To Kill a Centrifuge. http://www.langner.com/en/
wp-content/uploads/2013/11/To-kill-a-centrifuge.pdf, 2013.

[24] LEE, W., AND STOLFO, S. J. Data mining approaches for intrusion
detection. In USENIX Security Symposium (1998).

[25] LEE, W., STOLFO, S. J., AND MOK, K. W. A data mining framework
for building intrusion detection models. In IEEE Symposium on Security
and Privacy (1999).

[26] PASSERINI, E., PALEARI, R., MARTIGNONI, L., AND BRUSCHI, D.
Fluxor: detecting and monitoring fast-flux service networks. In Detection
of Intrusions and Malware, and Vulnerability Assessment (DIMVA)
(2008).

[27] ROSSOW, C., AND DIETRICH, C. Provex: Detecting botnets with
encrypted command and control channels. In Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA) (2013).

[28] ROSSOW, C., DIETRICH, C. J., GRIER, C., KREIBICH, C., PAXSON,
V., POHLMANN, N., BOS, H., AND VAN STEEN, M. Prudent practices
for designing malware experiments: Status quo and outlook. In IEEE
Symposium on Security and Privacy (2012).

[29] SABAHI, F., AND MOVAGHAR, A. Intrusion detection: A survey. In
International Conference on Systems and Networks Communications
(2008).

[30] STOCK, B., GOBEL, J., ENGELBERTH, M., FREILING, F., AND HOLZ,
T. Walowdac - Analysis of a Peer-to-Peer Botnet. In European
Conference on Computer Network Defense (2009).

[31] STONE-GROSS, B., COVA, M., CAVALLARO, L., GILBERT, B., SZYD-
LOWSKI, M., KEMMERER, R., KRUEGEL, C., AND VIGNA, G. Your
Botnet is My Botnet: Analysis of a Botnet Takeover. In ACM Conference
on Computer and Communications Security (CCS) (2009).

[32] STONE-GROSS, B., HOLZ, T., STRINGHINI, G., AND VIGNA, G. The
underground economy of spam: A botmaster’s perspective of coordinat-
ing large-scale spam campaigns. In USENIX Workshop on Large-Scale
Exploits and Emergent Threats (LEET) (2011).

[33] STONE-GROSS, B., KRUEGEL, C., ALMEROTH, K., MOSER, A., AND
KIRDA, E. FIRE: FInding Rogue nEtworks. In Annual Computer
Security Applications Conference (ACSAC) (2009).

[34] WARD, J. H. Hierarchical Grouping to Optimize an Objective Function.
Journal of the American Statistical Association 58 (1963), 236–244.

[35] WURZINGER, P., BILGE, L., HOLZ, T., GOEBEL, J., KRUEGEL, C.,
AND KIRDA, E. Automatically Generating Models for Botnet Detection.
In European Symposium on Research in Computer Security (ESORICS)
(2009).

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the_nitro_attacks.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the_nitro_attacks.pdf
https://public.gdatasoftware.com/Presse/Publikationen/Malware_Reports/GData_PCMWR_H2_2014_EN_v1.pdf
https://public.gdatasoftware.com/Presse/Publikationen/Malware_Reports/GData_PCMWR_H2_2014_EN_v1.pdf
https://public.gdatasoftware.com/Presse/Publikationen/Malware_Reports/GData_PCMWR_H2_2014_EN_v1.pdf
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PDF/rr-lsv-2006-13.pdf
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PDF/rr-lsv-2006-13.pdf
http://www. langner. com/en/wp-content/uploads/2013/11/To-kill-a-centrifuge.pdf
http://www. langner. com/en/wp-content/uploads/2013/11/To-kill-a-centrifuge.pdf

	I Introduction
	II Methodology
	II-A The experiment infrastructure
	II-B Security restrictions and ethical constraints
	II-C The experiment timeline
	II-D Features
	II-E Analysis procedure
	II-F Classification phase

	III Analysis of the Data
	III-A Dataset
	III-B Distribution of the samples
	III-C Statistical differences in distributions
	III-D Principal Component Analysis
	III-E Hierarchical clustering

	IV Statistical evaluation
	IV-A Complete dataset classification
	IV-B Filtered dataset classification
	IV-C PCA-only classification

	V Discussion
	V-A Results
	V-B Limitations

	VI Related Work
	VII Conclusions
	VIII Acknowledgments
	References

