MAMADROID: Detecting Android Malware by
Building Markov Chains of Behavioral Models

Enrico Mariconti’, Lucky Onwuzurike!, Panagiotis Andriotis?,

Emiliano De Cristofaro, Gordon Ross’, and Gianluca Stringhini®
fUniversity College London, fUniversity of the West of England
{enrico.mariconti. 14,lucky.onwuzurike. 13,e.decristofaro,g.ross, g.stringhini} @ucl.ac.uk,
panagiotis.andriotis @uwe.ac.uk

Abstract—The rise in popularity of the Android platform
has resulted in an explosion of malware threats targeting it. As
both Android malware and the operating system itself constantly
evolve, it is very challenging to design robust malware mitigation
techniques that can operate for long periods of time without
the need for modifications or costly re-training. In this paper,
we present MAMADROID, an Android malware detection system
that relies on app behavior. MAMADROID builds a behavioral
model, in the form of a Markov chain, from the sequence of
abstracted API calls performed by an app, and uses it to extract
features and perform classification. By abstracting calls to their
packages or families, MAMADROID maintains resilience to API
changes and keeps the feature set size manageable. We evaluate
its accuracy on a dataset of 8.5K benign and 35.5K malicious
apps collected over a period of six years, showing that it not
only effectively detects malware (with up to 99% F-measure),
but also that the model built by the system keeps its detection
capabilities for long periods of time (on average, 86% and 75%
F-measure, respectively, one and two years after training). Finally,
we compare against DROIDAPIMINER, a state-of-the-art system
that relies on the frequency of API calls performed by apps,
showing that MAMADROID significantly outperforms it.

I. INTRODUCTION

In the first quarter of 2016, 85% of smartphone sales were
devices running Android [49]. Due to its popularity, cyber-
criminals have increasingly targeted this ecosystem [17], as
malware running on mobile devices can be particularly lucrative
—e.g., allowing attackers to defeat two factor authentication [51],
[53] or trigger leakage of sensitive information [27]. Detecting
malware on mobile devices presents additional challenges com-
pared to desktop/laptop computers: smartphones have limited
battery life, making it infeasible to use traditional approaches
requiring constant scanning and complex computation [43].
Therefore, Android malware detection is typically performed
by Google in a centralized fashion, i.e., by analyzing apps
submitted to the Play Store using a tool called Bouncer [40].
However, many malicious apps manage to avoid detection [1],
and anyway Android’s openness enables manufacturers and

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.

NDSS ’17, 26 February - 1 March 2017, San Diego, CA, USA

Copyright 2017 Internet Society, ISBN 1-1891562-46-0
http://dx.doi.org/10.14722/ndss.2017.23353

users to install apps that come from third-party market places,
which might not perform any malware checks at all, or anyway
not as accurately [67].

As a result, the research community has devoted significant
attention to malware detection on Android. Previous work
has often relied on the permissions requested by apps [20],
[46], using models built from malware samples. This strategy,
however, is prone to false positives, since there are often
legitimate reasons for benign apps to request permissions
classified as dangerous [20]. Another approach, used by
DROIDAPIMINER [2], is to perform classification based on
API calls frequently used by malware. However, relying on
the most common calls observed during training prompts the
need for constant retraining, due to the evolution of malware
and the Android API alike. For instance, “old” calls are often
deprecated with new API releases, so malware developers may
switch to different calls to perform similar actions, which affects
DROIDAPIMINER’s effectiveness due to its use of specific calls.

In this paper, we present a novel malware detection system
for Android that instead relies on the sequence of abstracted
API calls performed by an app rather than their use or frequency,
aiming to capture the behavioral model of the app. Our system,
which we call MAMADROID, abstracts API calls to either
the package name of the call (e.g., java.lang) or its source
(e.g., java, android, google), which we refer to as family.
Abstraction provides resilience to API changes in the Android
framework as families and packages are added and removed
less frequently than single API calls. At the same time, this does
not abstract away the behavior of an app: for instance, packages
include classes and interfaces used to perform similar operations
on similar objects, so we can model the types of operations from
the package name, independently of the underlying classes and
interfaces. For example, we know that the java.io package
is used for system I/O and access to the file system, even
though there are different classes and interfaces provided by
the package for such operations.

After abstracting the calls, MAMADROID analyzes the
sequence of API calls performed by an app, aiming to model
the app’s behavior. Our intuition is that malware may use calls
for different operations, and in a different order, than benign
apps. For example, android.media.MediaRecorder can be used
by any app that has permission to record audio, but the call
sequence may reveal that malware only uses calls from this
class after calls to getRunningTasks(), which allows recording
conversations [65], as opposed to benign apps where calls from

the class may appear in any order. Relying on the sequence
of abstracted calls allows us to model behavior in a more
complex way than previous work, which only looked at the
presence or absence of certain API calls or permissions [2], [5],
while still keeping the problem tractable [33]. MAMADROID
builds a statistical model to represent the transitions between
the API calls performed by an app, specifically, we model
these transitions as Markov chains, and use them to extract
features and perform classification (i.e., labeling apps as benign
or malicious). Calls are abstracted to either their package or
their family, i.e., MAMADROID operates in one of two modes,
depending on the abstraction granularity.

We present a detailed evaluation of both classification
accuracy (using F-measure, precision, and recall) and runtime
performance of MAMADROID, using a dataset of almost 44K
apps (8.5K benign and 35.5K malware samples). We include
a mix of older and newer apps, from October 2010 to May
2016, verifying that our model is robust to changes in Android
malware samples and APIs. To the best of our knowledge,
this is the largest malware dataset used to evaluate an Android
malware detection system in a research paper. Our experimental
analysis shows that MAMADROID can effectively model both
benign and malicious Android apps, and perform an efficient
classification on them. Compared to other systems such as
DROIDAPIMINER [2], our approach allows us to account for
changes in the Android API, without the need to frequently
retrain the classifier.

We show that MAMADROID is able to effectively detect
unknown malware samples not only in the “present,” (with
F-measure up to 99%) but also consistently over the years (i.e.,
when the system is trained on older samples and classification
performed over newer ones), as it keeps an average detection
accuracy, evaluated in terms of F-measure, of 86% after one
year and 75% after two years (as opposed to 46% and 42%
achieved by DROIDAPIMINER [2]). We also highlight that
when the system is not efficient anymore (when the test set is
newer than the training set by more than two years), it is as a
result of MAMADROID having low recall, but maintaining
high precision. We also do the opposite, i.e., training on
newer samples and verifying that the system can still detect
old malware. This is particularly important as it shows that
MAMADROID can detect newer threats, while still identifying
malware samples that have been in the wild for some time.

Summary of Contributions. First, we introduce a novel
approach, implemented in a tool called MAMADROID, to detect
Android malware by abstracting API calls to their package
and family, and using Markov chains to model the behavior
of the apps through the sequences of API calls. Second, we
can detect unknown samples on the same year of training
with an F-measure of 99%, but also years after training the
system, meaning that MAMADROID does not need continuous
re-training. Our system is scalable as we model every single
app independently from the others and can easily append app
features in a new training set. Finally, compared to previous
work [2], MAMADROID achieves significantly higher accuracy
with reasonably fast running times, while also being more
robust to evolution in malware development and changes in
the Android APIL.

Paper Organization. The rest of the paper is organized as
follows. The next section presents the MAMADROID system,

- OiO
s O O
Sequence Markov Chain Classification &&

Extraction (2) Modeling (3) (4)

£
Call Graph
'ﬂ' |:> Extraction (1)

K
Fig. 1: Overview of MAMADROID operation. In (1), it extracts the
call graph from an Android app, next, it builds the sequences of
(abstracted) API calls from the call graph (2). In (3), the sequences
of calls are used to build a Markov chain and a feature vector for

that app. Finally, classification is performed in (4), labeling the app
as benign or malicious.

then, Section III introduces the datasets used in our evaluation
(Section 1V), while Section V further discusses our results
as well as its limitations. After reviewing related work in
Section VI, the paper concludes in Section VII.

II. THE MAMADROID SYSTEM
A. Overview

We now introduce MAMADROID, a novel system for
Android malware detection. MAMADROID characterizes the
transitions between different API calls performed by Android
apps — i.e., the sequence of API calls. It then models these
transitions as Markov chains, which are in turn used to extract
features for machine learning algorithms to classify apps as
benign or malicious. MAMADROID does not actually use the
sequence of raw API calls, but abstracts each call to either its
package or its family. For instance, the API call getMessage()
is parsed as:

package

— .
java.lang. Throwable: String getMessage()
~~

family

API call

Given these two different types of abstractions, we have
two modes of operation for MAMADROID, each using one
of the types of abstraction. We test both, highlighting their
advantages and disadvantages — in a nutshell, the abstraction
to family is more lightweight, while that to package is more
fine-grained.

MAMADROID’s operation goes through four phases, as
depicted in Fig. 1. First, we extract the call graph from each
app by using static analysis (1), next we obtain the sequences
of API calls for the app using all unique nodes in the call
graph and associating, to each node, all its child nodes (2). As
mentioned, we abstract a call to either its package or family.
Finally, by building on the sequences, MAMADROID constructs
a Markov chain model (3), with the transition probabilities used
as the feature vector to classify the app as either benign or
malware using a machine learning classifier (4). In the rest of
this section, we discuss each of these steps in detail.

B. Call Graph Extraction

The first step in MAMADROID is to extract the app’s call
graph. We do so by performing static analysis on the app’s

package com.fa.c;

import android.content.Context;

import android.os.Environment;

import android.util.Log;

import com.stericson.RootShell.execution.Command;
import com.stericson.RootShell.execution.Shell;
import com.stericson.RootTools.RootTools;

import java.io.File;

public class RootCommandExecutor {
public static boolean Execute(Context paramContext) {

paramContext = new Command(0, new String[] { "cat " + Environment.
getExternalStorageDirectory() .getAbsolutePath() + File.separator + Utilities
.GetWatchDogName (paramContext) + " > /data/" + Utilities.GetWatchDogName (
paramContext), "cat " + Environment.getExternalStorageDirectory().
getAbsolutePath() + File.separator + Utilities.GetExecName(paramContext) + "
> /data/" + Utilities.GetExecName(paramContext), "rm " + Environment.
getExternalStorageDirectory() .getAbsolutePath() + File.separator + Utilities
.GetWatchDogName (paramContext), "rm " + Environment.
getExternalStorageDirectory() .getAbsolutePath() + File.separator + Utilities
.GetExecName (paramContext), "chmod 777 /data/" + Utilities.GetWatchDogName (
paramContext), "chmod 777 /data/" + Utilities.GetExecName(paramContext), "/
data/" + Utilities.GetWatchDogName(paramContext) + " " + Utilities.
GetDeviceInfoCommandLineArgs (paramContext) + " /data/" + Utilities.
GetExecName (paramContext) + " " + Environment.getExternalStorageDirectory().
getAbsolutePath() + File.separator + Utilities.GetExchangeFileName(
paramContext) + " " + Environment.getExternalStorageDirectory().
getAbsolutePath() + File.separator + " " + Utilities.GetPhoneNumber (
paramContext) });

try {

RootTools.getShell (true) .add (paramContext) ;
return true;

}

catch (Exception paramContext) {

Log.d("CPS", paramContext.getMessage());

}

return false;

}
¥

Fig. 2: Code snippet from a malicious app (com.g.o.speed.memboost)
executing commands as root.

apk.! Specifically, we use a Java optimization and analysis
framework, Soot [52], to extract call graphs and FlowDroid [6]
to ensure contexts and flows are preserved.

To better clarify the different steps involved in our system,
we employ a “running example,” using a real-world malware
sample. Specifically, Fig. 2 lists a class extracted from the
decompiled apk of malware disguised as a memory booster app
(with package name com.g.o.speed.memboost), which executes
commands (rm, chmod, etc.) as root.” To ease presentation, we

focus on the portion of the code executed in the try/catch block.
The resulting call graph of the try/catch block is shown in Fig. 3.

Note that, for simplicity, we omit calls for object initialization,
return types and parameters, as well as implicit calls in a
method. Additional calls that are invoked when getShell(true)
is called are not shown, except for the add() method that is
directly called by the program code, as shown in Fig. 2.

C. Sequence Extraction

Next, we extract the sequences of API calls from the call
graph. Since MAMADROID uses static analysis, the graph
obtained from Soot represents the sequence of functions that
are potentially called by the program. However, each execution
of the app could take a specific branch of the graph and only
execute a subset of the calls. For instance, when running the
code in Fig. 2 multiple times, the Execute method could be
followed by different calls, e.g., getShell() in the try block only
or getShell() and then getMessage() in the catch block.

The standard Android archive file format containing all files, including the
Java bytecode, making up the app.
Zhtps://www.hackread.com/ghost-push-android-malware/

com.fa.c.RootCommandExecutor:
Execute()
android.util.Log: com.stericson.RootTools.RootTools:
d0 getShell()
java.lang.Throwable:
getMessage()
com.stericson.RootShell.execution.Shell:
add()

Fig. 3: Call graph of the API calls in the try/catch block of Fig. 2.
(Return types and parameters are omitted to ease presentation).

In this phase, MAMADROID operates as follows. First, it
identifies a set of entry nodes in the call graph, i.e., nodes with
no incoming edges (for example, the Execute method in the
snippet from Fig. 2 is the entry node if there is no incoming
edge from any other call in the app). Then, it enumerates the
paths reachable from each entry node. The sets of all paths
identified during this phase constitutes the sequences of API
calls which will be used to build a Markov chain behavioral
model and to extract features (see Section II-D).

Abstracting Calls to Families/Packages. Rather than analyz-
ing raw API calls, we build MAMADROID to work at a higher
level, and operate in one of two modes by abstracting each
call to either its package or family. This allows the system
to be resilient to API changes and achieve scalability. In fact,
our experiments, presented in Section III, show that, from a
dataset of 44K apps, we extract more than 10 million unique
API calls, which would result in a very large number of nodes,
with the corresponding graphs (and feature vectors) being quite
sparse. Since as we will see the number of features used by
MAMADROID is the square of the number of nodes, having
more than 10 million nodes would result in an impractical
computational cost.

When operating in package mode, we abstract an API
call to its package name using the list of Android pack-
ages3, which as of API level 24 (the current version as of
September 2016) includes 243 packages, as well as 95 from
the Google APL* Moreover, we abstract developer-defined
packages (e.g., com.stericson.roottools) as well as obfuscated
ones (e.g. com.fa.a.b.d), respectively, as self-defined and
obfuscated. Note that we label an API call’s package
as obfuscated if we cannot tell what its class implements,
extends, or inherits, due to identifier mangling [47]. When
operating in family mode, we abstract to nine possible families,
i.e., android, google, java, javax, xml, apache, junit,
json, dom, which correspond to the android.*, com.google.*,
java.*, javax.*, org.xml.*, org.apache.*, junit.*, org.json, and
org.w3c.dom.* packages. Again, API calls from developer-
defined and obfuscated packages are abstracted to families
labeled as self-defined and obfuscated, respectively. Over-
all, there are 340 (243+95+-2) possible packages and 11 (9+2)
families. In Fig. 4, we show the sequence of API calls obtained
from the call graph in Fig. 3. We also report, in square brackets,
the family and the package to which the call is abstracted.

3https://developer.android.com/reference/packages.html
“https://developers.google.com/android/reference/packages

https://www.hackread.com/ghost-push-android-malware/
https://developer.android.com/reference/packages.html
https://developers.google.com/android/reference/packages

com.fa.c.RootCommandExecutor:

Execute() |
[self-defined, self-defined]

com.stericson.RootTools.RootTools:

getShell() —
[self-defined, self-defined]

com.stericson.RootShell.
execution.Shell: add()
[self-defined, self-defined]

com.fa.c.RootCommandExecutor:

Execute() —
[self-defined, self-defined]

android.util.Log:

[android.util, android]

com.fa.c.RootCommandExecutor:

Execute() —|
[self-defined, self-defined]

java.lang. Throwable:
getMessage()
[java.lang, javal

Fig. 4: Sequence of API calls extracted from the call graphs in Fig. 3, with the corresponding package/family abstraction in square brackets.

self-defined self-defined

0.5 0.5

java.lang android.util java android

(@ (b)

Fig. 5: Markov chains originating from the call sequence example in
Section II-C when using packages (a) or families (b).

D. Markov-chain Based Modeling

Next, MAMADROID builds feature vectors, used for classi-
fication, based on the Markov chains representing the sequences
of extracted API calls for an app. Before discussing this in
detail, we review the basic concepts of Markov chains.

Markov chains are memoryless models where the probability
of transitioning from a state to another only depends on the
current state [39]. Markov chains are often represented as
a set of nodes, each corresponding to a different state, and
a set of edges connecting one node to another labeled with
the probability of that transition. The sum of all probabilities
associated to all edges from any node (including, if present,
an edge going back to the node itself) is exactly 1.The set
of possible states of the Markov chain is denoted as S. If S
and S are two connected states, P;;, denotes the probability
of transition from S; to Si. Pj; is given by the number of
occurrences (Oj) of state S, after state gj, divided by Oj;

ik

for all states ¢ in the chain, i.e., Pj; = Ston
- ieS Jr

Building the model. MAMADROID uses Markov chains to

model app behavior, by evaluating every transition between calls.

More specifically, for each app, MAMADROID takes as input
the sequence of abstracted API calls of that app — i.e., packages
or families, depending on the selected mode of operation — and
builds a Markov chain where each package/family is a state
and the transitions represent the probability of moving from
one state to another. For each Markov chain, state Sy is the

entry point from which other calls are made in a sequence.

As an example, Fig. 5 illustrates the two Markov chains built
using packages and families, respectively, from the sequences
reported in Fig. 4.

We argue that considering single transitions is more robust
against attempts to evade detection by inserting useless API

calls in order to deceive signature-based systems (see Sec-
tion VI). In fact, MAMADROID considers all possible calls —
i.e., all the branches originating from a node — in the Markov
chain, so adding calls would not significantly change the
probabilities of transitions between nodes (specifically, families
or packages, depending on the operational mode) for each app.

Feature Extraction. Next, we use the probabilities of transi-
tioning from one state (abstracted call) to another in the Markov
chain as the feature vector of each app. States that are not
present in a chain are represented as 0 in the feature vector. Also
note that the vector derived from the Markov chain depends on
the operational mode of MAMADROID. With families, there
are 11 possible states, thus 121 possible transitions in each
chain, while, when abstracting to packages, there are 340 states
and 115,600 possible transitions.

We also apply Principal Component Analysis (PCA) [32],
which performs feature selection by transforming the feature
space into a new space made of components that are a linear
combination of the original features. The first components
contain as much variance (i.e., amount of information) as
possible. The variance is given as percentage of the total amount
of information of the original feature space. We apply PCA to
the feature set in order to select the principal components, as
PCA transforms the feature space into a smaller one where the
variance is represented with as few components as possible,
thus considerably reducing computation/memory complexity.
Furthermore, the use of PCA could also improve the accuracy
of the classification, by taking misleading features out of the
feature space, i.e., those that make the classifier perform worse.

E. Classification

The last step is to perform classification, i.e., labeling apps
as either benign or malware. To this end, we test MAMADROID
using different classification algorithms: Random Forests [9], 1-
Nearest Neighbor (1-NN) [22], 3-Nearest Neighbor (3-NN) [22],
and Support Vector Machines (SVM) [29]. Each model is
trained using the feature vector obtained from the apps in a
training sample. Results are presented and discussed in Section
IV, and have been validated by using 10-fold cross validation.

Also note that, due to the different number of features used
in family/package modes, we use two distinct configurations for
the Random Forests algorithm. Specifically, when abstracting
to families, we use 51 trees with maximum depth 8, while,
with packages, we use 101 trees of maximum depth 64. To
tune Random Forests we followed the methodology applied
in [7].

Category | Name Date Range #Samples #Samples #Samples
(API Calls) (Call Graph)

Benign oldbenign | Apr 2013 - Nov 2013 5,879 5,837 5,572
newbenign | Mar 2016 - Mar 2016 2,568 2,565 2,465

Total Benign: 8,447 8,402 8,037

drebin Oct 2010 - Aug 2012 5,560 5,546 5,538

2013 Jan 2013 - Jun 2013 6,228 6,146 6,123

Malware | 2014 Jun 2013 — Mar 2014 15,417 14,866 14,827
2015 Jan 2015 - Jun 2015 5,314 5,161 4,725

2016 Jan 2016 — May 2016 2,974 2,802 2,657

Total Malware: 35,493 34,521 33,870

TABLE I: Overview of the datasets used in our experiments.

III. DATASETS

In this section, we introduce the datasets used in the
evaluation of MAMADROID (presented later in Section IV),
which include 43,940 apk files — 8,447 benign and 35,493
malware samples. We include a mix of older and newer apps,
ranging from October 2010 to May 2016, as we aim to verify
that MAMADROID is robust to changes in Android malware
samples as well as APIs. To the best of our knowledge, we are
leveraging the largest dataset of malware samples ever used in
a research paper on Android malware detection.

Benign Samples. Our benign datasets consist of two sets of
samples: (1) one, which we denote as oldbenign, includes
5,879 apps collected by PlayDrone [55] between April and
November 2013, and published on the Internet Archive® on
August 7, 2014; and (2) another, newbenign, obtained by
downloading the top 100 apps in each of the 29 categories on the
Google Play store® as of March 7, 2016, using the googleplay-
api tool.” Due to errors encountered while downloading some
apps, we have actually obtained 2,843 out of 2,900 apps. Note
that 275 of these belong to more than one category, therefore,
the newbenign dataset ultimately includes 2,568 unique apps.

Android Malware Samples. The set of malware samples
includes apps that were used to test DREBIN [5], dating back
to October 2010 — August 2012 (5,560), which we denote as
drebin, as well as more recent ones that have been uploaded
on the VirusShare® site over the years. Specifically, we gather
from VirusShare, respectively, 6,228, 15,417, 5,314, and 2,974
samples from 2013, 2014, 2015, and 2016. We consider each
of these datasets separately for our analysis.

API Calls and Call Graphs. For each app in our datasets,
we extract the list of API calls, using Androguard’, since, as
explained in Section IV-E, these constitute the features used by
DROIDAPIMINER [2], against which we compare our system.
Due to Androguard failing to decompress some of the apks,
bad CRC-32 redundancy checks, and errors during unpacking,
we are not able to extract the API calls for all the samples,
but only for 42,923 (8,402 benign, 34,521 malware) out of the
43,940 apps (8,447 benign, 35,493 malware) in our datasets.
Also, to extract the call graph of each apk, we use Soot. Note
that for some of the larger apks, Soot requires a non-negligible
amount of memory to extract the call graph, so we allocate

Shttps://archive.org/details/playdrone-apk-e8
Shttps://play.google.com/store
"https://github.com/egirault/googleplay-api
8https://virusshare.com/
“https://github.com/androguard/androguard

1.0,

0.8-

0.6 |

CDF

0411 - 2013
2014
-+ 2015
- 2016
—- drebin
~ newbenign
-— oldbenign

5000 10000 15000 20000 25000 30000 35000
#API Calls

Fig. 6: CDF of the number of API calls in different apps in each
dataset.

0.2+

0.0

16GB of RAM to the Java VM heap space. We find that for
2,027 (410 benign + 1,617 malware) samples, Soot is not able
to complete the extraction due to it failing to apply the jb
phase as well as reporting an error in opening some zip files
(i.e., the apk). The jb phase is used by Soot to transform Java
bytecode into jimple intermediate representation (the primary
IR of Soot) for optimization purposes. Therefore, we exclude
these apps in our evaluation and discuss this limitation further
in Section V-C. In Table I, we provide a summary of our seven
datasets, reporting the total number of samples per dataset, as
well as those for which we are able to extract the API calls
(second-to-last column) and the call graphs (last column).

Characterization of the Datasets. Aiming to shed light on
the evolution of API calls in Android apps, we also performed
some measurements over our datasets. In Fig. 6, we plot the
Cumulative Distribution Function (CDF) of the number of
unique API calls in the apps in different datasets, highlighting
that newer apps, both benign and malicious, are using more API
calls overall than older apps. This indicates that as time goes
by, Android apps become more complex. When looking at the
fraction of API calls belonging to specific families, we discover
some interesting aspects of Android apps developed in different
years. In particular, we notice that API calls to the android
family become less prominent as time passes (Fig. 7(a)), both
in benign and malicious datasets, while google calls become
more common in newer apps (Fig. 7(b)).

In general, we conclude that benign and malicious apps
show the same evolutionary trends over the years. Malware,
however, appears to reach the same characteristics (in terms
of level of complexity and fraction of API calls from certain
families) as legitimate apps with a few years of delay.

https://archive.org/details/playdrone-apk-e8
https://play.google.com/store
https://github.com/egirault/googleplay-api
https://virusshare.com/
https://github.com/androguard/androguard

- 2013
2014
--- 2015
08 - - 2016 .
—- drebin &
-+ newbenign| - o
0.6 -— oldbenign | ¢ -’ d

CDF

0.4

0.2

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Calls

(a) android

0.4lf ¢ w2013
] 2014
2015

02} & -- 2016
$ —=- drebin

=== newbenign
-— oldbenign

0.0

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Calls
(b) google

Fig. 7: CDFs of the percentage of android and google family calls
in different apps in each dataset.

Principal Component Analysis. Finally, we apply PCA to
select the two most important PCA components. We plot
and compare the positions of the two components for benign
(Fig. 8(a)) and malicious samples (Fig. 8(b)). As PCA combines
the features into components, it maximizes the variance of the
distribution of samples in these components, thus, plotting the
positions of the samples in the components shows that benign
apps tend to be located in different areas of the components
space, depending on the dataset, while malware samples occupy
similar areas but with different densities. These differences
highlight a different behavior between benign and malicious
samples, and these differences should also be found by the
machine learning algorithms used for classification.

1V. EVALUATION

We now present a detailed experimental evaluation of
MAMADROID. Using the datasets summarized in Table I, we
perform four sets of experiments: (1) we analyze the accuracy
of MAMADROID’s classification on benign and malicious
samples developed around the same time; (2) we evaluate its
robustness to the evolution of malware as well as of the Android
framework by using older datasets for training and newer ones
for testing (and vice-versa); (3) we measure MAMADROID’s
runtime performance to assess its scalability; and, finally, (4)
we compare against DROIDAPIMINER [2], a malware detection
system that relies on the frequency of API calls.

1.0,

0.8+

0.6

PCA2

+ oldbenign
- newbenign

=10 -0.5 0.0 0.5 1.0 1.5
PCA1

(a) benign

0.8

0.6

0.4}

0.2

PCA2

0.0-

—0.2}

—0.4F

—0.6f

—0.8
-1.0

PCAL
(b) malware

Fig. 8: Positions of benign vs malware samples in the feature space
of the first two components of the PCA (family mode).

A. Preliminaries

When implementing MAMADROID in family mode, we
exclude the json and dom families because they are almost
never used across all our datasets, and junit, which is primarily
used for testing. In package mode, to avoid mislabeling when
self-defined APIs have “android” in the name, we split the
android package into its two classes, i.e., android.R and
android.Manifest. Therefore, in family mode, there are 8
possible states, thus 64 features, whereas, in package mode,
we have 341 states and 116,281 features (cf. Section II-D).

As discussed in Section II-E, we use four different ma-
chine learning algorithms for classification — namely, Random
Forests [9], 1-NN [22], 3-NN [22], and SVM [29]. Since both
accuracy and speed are worse with SVM than with the other
three algorithms, we omit results obtained with SVM. To assess
the accuracy of the classification, we use the standard F-measure

metric, i.e.: ..
precision - recall

precision + recall

where precision = TP/(TP+FP) and recall = TP/(TP+FN).
TP denotes the number of samples correctly classified as
malicious, while FP an FN indicate, respectively, the number
of samples mistakenly identified as malicious and benign.

F=2.

Finally, note that all our experiments perform 10-fold cross
validation using at least one malicious and one benign dataset
from Table I. In other words, after merging the datasets, the

1.0

Il rF
B 1NN
EJ 3-nn

0.8

F-measure
o
o

I
IS

0.2

0.0 —
Drebin & 2013 & 2014 & 2014 & 2015 & 2016 &
OldBenign OldBenign OldBeni i i i

Fig. 9: F-measure of MAMADROID classification with datasets from
the same year (family mode).

resulting set is shuffled and divided into ten equal-size random
subsets. Classification is then performed ten times using nine
subsets for training and one for testing, and results are averaged
out over the ten experiments.

B. Detection Performance

We start our evaluation by measuring how well MA-
MADROID detects malware by training and testing using
samples that are developed around the same time. To this end,
we perform 10-fold cross validations on the combined dataset
composed of a benign set and a malicious one. Table II provides
an overview of the detection results achieved by MAMADROID
on each combined dataset, in the two modes of operation,
both with PCA features and without. The reported F-measure,
precision, and recall scores are the ones obtained with Random
Forest, which generally performs better than 1-NN and 3-NN.

Family mode. In Fig. 9, we report the F-measure when
operating in family mode for Random Forests, 1-NN and 3-
NN. The F-measure is always at least 88% with Random
Forests, and, when tested on the 2014 (malicious) dataset, it
reaches 98%. With some datasets, MAMADROID performs
slightly better than with others. For instance, with the 2014
malware dataset, we obtain an F-measure of 92% when using
the oldbenign dataset and 98% with newbenign. In general,
lower F-measures are due to increased false positives since
recall is always above 95%, while precision might be lower,
also due to the fact that malware datasets are larger than the
benign sets. We believe that this follows the evolutionary trend
discussed in Section III: while both benign and malicious apps
become more complex as time passes, when a new benign app
is developed, it is still possible to use old classes or re-use
code from previous versions and this might cause them to be
more similar to old malware samples. This would result in
false positives by MAMADROID. In general, MAMADROID
performs better when the different characteristics of malicious
and benign training and test sets are more predominant, which
corresponds to datasets occupying different positions of the
feature space.

Package mode. When MAMADROID runs in package mode,
the classification performance improves, ranging from 92%
F-measure with 2016 and newbenign to 99% with 2014 and

1.0

I rF
B 1NN
K] 3-nn

0.8

0.6

F-measure

0.4

0.2

0.0 —
Drebin & 2013 & 2014 & 2014 & 2015 & 2016 &
OldBenign

Fig. 10: F-measure of MAMADROID classification with datasets from
the same year (package mode).

OldBenign OldBenign Newbenign ~ Newbenign Newbenign

newbenign, using Random Forests. Fig. 10 reports the F-
measure of the 10-fold cross validation experiments using
Random Forests, 1-NN, and 3-NN (in package mode). The
former generally provide better results also in this case.

With some datasets, the difference in performance between
the two modes of operation is more noticeable: with drebin
and oldbenign, and using Random Forests, we get 95% F-
measure in package mode compared to 88% in family mode.
These differences are caused by a lower number of false
positives in package mode. Recall remains high, resulting
in a more balanced system overall. In general, abstracting
to packages rather than families provides better results as
the increased granularity enables identifying more differences
between benign and malicious apps. On the other hand, however,
this likely reduces the efficiency of the system, as many of the
states deriving from the abstraction are used a only few times.
The differences in time performance between the two modes
are analyzed in details in Section IV-F.

Using PCA. As discussed in Section II-D, PCA transforms
large feature spaces into smaller ones, thus it can be useful
to significantly reduce computation and, above all, memory
complexities of the classification task. When operating in pack-
age mode, PCA is particularly beneficial, since MAMADROID
originally has to operate over 116,281 features. Therefore, we
compare results obtained using PCA by fixing the number
of components to 10 and checking the quantity of variance
included in them. In package mode, we observe that only 67%
of the variance is taken into account by the 10 most important
PCA components, whereas, in family mode, at least 91% of
the variance is included by the 10 PCA Components.

As shown in Table II, the F-measure obtained using Random
Forests and the PCA components sets derived from the family
and package features is only slightly lower (up to 4%) than
using the full feature set. We note that lower F-measures are
caused by a uniform decrease in both precision and recall.

C. Detection Over Time

As Android evolves over the years, so do the characteristics
of both benign and malicious apps. Such evolution must be
taken into account when evaluating Android malware detection

Dataset [Precision, Recall, F-measure]
Mode drebin & oldbenign |2013 & oldbenign | 2014 & oldbenign | 2014 & newbenign | 2015 & newbenign | 2016 & newbenign
Family 0.82 0.95 088091 093 0.92(088 097 092097 099 098090 094 0.92(087 092 0.89
Package 0.95 0.97 096098 096 097093 098 0.96/098 1.00 099093 098 096091 091 091

Family (PCA)]0.83 0.93 0871093 090 091086 0.94

090096 099 097[087 093 0.90/0.86 0.87 0.87

Package (PCA) | 0.93 0.95 0941097 094 095092 0.96

0941098 1.00 0.99[092 097 0.94/0.88 090 0.89

TABLE II: F-measure, precision, and recall obtained by MAMADROID, using Random Forests, on various dataset combinations with different

modes of operation, with and without PCA.

systems, since their accuracy might significantly be affected
as newer APIs are released and/or as malicious developers
modify their strategies in order to avoid detection. Evaluating
this aspect constitutes one of our research questions, and one
of the reasons why our datasets span across multiple years
(2010-2016).

As discussed in Section 1I-B, MAMADROID relies on the
sequence of API calls extracted from the call graphs and
abstracted at either the package or the family level. Therefore,
it is less susceptible to changes in the Android API than
other classification systems such as DROIDAPIMINER [2]
and DREBIN [5]. Since these rely on the use, or the frequency,
of certain API calls to classify malware vs benign samples,
they need to be retrained following new API releases. On the
contrary, retraining is not needed as often with MAMADROID,
since families and packages represent more abstract function-
alities that change less over time. Consider, for instance, the
android.os.health package: released with API level 24, it
contains a set of classes helping developers track and monitor
system resources.'? Classification systems built before this
release — as in the case of DROIDAPIMINER [2] (released in
2013, when Android API was up to level 20) — need to be
retrained if this package is more frequently used by malicious
apps than benign apps, while MAMADROID only needs to add
a new state to its Markov chain when operating in package
mode, while no additional state is required when operating in
family mode.

To verify this hypothesis, we test MAMADROID using older
samples as training sets and newer ones as test sets. Fig. 11
reports the F-measure of the classification in this setting, with
MAMADROID operating in family mode. The x-axis reports the
difference in years between training and test data. We obtain
86% F-measure when we classify apps one year older than
the samples on which we train. Classification is still relatively
accurate, at 75%, even after two years. Then, from Fig. 12,
we observe that the F-measure does not significantly change
when operating in package mode. Both modes of operations
are affected by one particular condition, already discussed in
Section III: in our models, benign datasets seem to “anticipate”
malicious ones by 1-2 years in the way they use certain
API calls. As a result, we notice a drop in accuracy when
classifying future samples and using drebin (with samples
from 2010 to 2012) or 2013 as the malicious training set and
oldbenign (late 2013/early 2014) as the benign training set.
More specifically, we observe that MAMADROID correctly
detects benign apps, while it starts missing true positives and
increasing false negatives — i.e., achieving lower recall.

We also set to verify whether older malware samples can still
be detected by the system—if not, this would obviously become

10https://developer.android.com/reference/android/os/health/package-summary.
html

1.0

A—A RF
e—e 1-NN

0.8 ¥¥v 3-NN

F-measure
o
o

©
S

0.0

0 1 2 3 4
Years

Fig. 11: F-measure of MAMADROID classification using older samples
for training and newer for testing (family mode).

1.0

A—4A RF
e 1-NN
v—v 3-NN

0.8

0.6

F-measure

0.4

0.2

0.0
0 1 2 3 4

Years

Fig. 12: F-measure of MAMADROID classification using older samples
for training and newer for testing (package mode).

vulnerable to older (and possibly popular) attacks. Therefore,
we also perform the “opposite” experiment, i.e., training
MAMADROID with newer datasets, and checking whether it
is able to detect malware developed years before. Specifically,
Fig. 13 and 14 report results when training MAMADROID with
samples from a given year, and testing it with others that are
up to 4 years older: MAMADROID retains similar F-measure
scores over the years. Specifically, in family mode, it varies
from 93% to 96%, whereas, in package mode, from 95% to
97% with the oldest samples.

D. Case Studies of False Positives and Negatives

The experiment analysis presented above show that MA-
MADROID detects Android malware with high accuracy.
As in any detection system, however, the system makes a
small number of incorrect classifications, incurring some false
positives and false negatives. Next, we discuss a few case
studies aiming to better understand these misclassifications. We
focus on the experiments with newer datasets, i.e., 2016 and

https://developer.android.com/reference/android/os/health/package-summary.html
https://developer.android.com/reference/android/os/health/package-summary.html

1.0

0.8

F-measure
5}
o

o
IS

0.2 RF

e—e 1-NN
v—v 3-NN

0.0 " " "
[1 2 3 4
Years

Fig. 13: F-measure of MAMADROID classification using newer
samples for training and older for testing (family mode).

1.0

— v S
| \‘\/4

F-measure
o
o

o
IS

02r a4 RF

e-e 1-NN
V¥ 3-NN

0.0
0 1 2 3 4

Years

Fig. 14: F-measure of MAMADROID classification using newer
samples for training and older for testing (package mode).

newbenign.

False Positives. We analyze the manifest of the 164 apps
mistakenly detected as malware by MAMADROID, finding that
most of them use “dangerous” permissions [4]. In particular,
67% of the apps write to external storage, 32% read the phone
state, and 21% access the device’s fine location. We further
analyzed apps (5%) that use the READ_SMS and SEND_SMS
permissions, i.e., even though they are not SMS-related apps,
they can read and send SMSs as part of the services they provide
to users. In particular, a “in case of emergency” app is able to
send messages to several contacts from its database (possibly
added by the user), which is a typical behavior of Android
malware in our dataset, ultimately leading MAMADROID to
flag it as malicious.

False Negatives. We also check the 114 malware samples
missed by MAMADROID when operating in family mode,
using VirusTotal.'! We find that 18% of the false negatives
are actually not classified as malware by any of the antivirus
engines used by VirusTotal, suggesting that these are actually

legitimate apps mistakenly included in the VirusShare dataset.

45% of MAMADROID’s false negatives are adware, typically,
repackaged apps in which the advertisement library has been
substituted with a third-party one, which creates a monetary
profit for the developers. Since they are not performing any
clearly malicious activity, MAMADROID is unable to identify

Mhttps://www.virustotal.com

them as malware. Finally, we find that 16% of the false negatives
reported by MAMADROID are samples sending text messages
or starting calls to premium services. We also do a similar
analysis of false negatives when abstracting to packages (74
samples), with similar results: there a few more adware samples
(53%), but similar percentages for potentially benign apps (15%)
and samples sending SMSs or placing calls (11%).

In conclusion, we find that MAMADROID’s sporadic
misclassifications are typically due to benign apps behaving
similarly to malware, malware that do not perform clearly-
malicious activities, or mistakes in the ground truth labeling.

E. MAMADROID vs DROIDAPIMINER

We also compare the performance of MAMADROID to
previous work using API features for Android malware clas-
sification. Specifically, we compare to DROIDAPIMINER [2],
because: (i) it uses API calls and its parameters to perform
classification; (ii) it reports high true positive rate (up to 97.8%)
on almost 4K malware samples obtained from McAfee and
GENOME [66], and 16K benign samples; and (iii) its source
code has been made available to us by the authors.

In DROIDAPIMINER, permissions that are requested more
frequently by malware samples than by benign apps are used
to perform a baseline classification. Since there are legitimate
situations where a non-malicious app needs permissions tagged
as dangerous, DROIDAPIMINER also applies frequency anal-
ysis on the list of API calls, specifically, using the 169 most
frequent API calls in the malware samples (occurring at least
6% more in malware than benign samples) —leading to a
reported 83% precision. Finally, data flow analysis is applied
on the API calls that are frequent in both benign and malicious
samples, but do not occur by at least, 6% more in the malware
set. Using the top 60 parameters, the 169 most frequent calls
change, and authors report a precision of 97.8%.

After obtaining DROIDAPIMINER’s source code, as well as
a list of packages used for feature refinement, we re-implement
the system by modifying the code in order to reflect recent
changes in Androguard (used by DROIDAPIMINER for API
call extraction), extract the API calls for all apps in the datasets
listed in Table I, and perform a frequency analysis on the
calls. Androguard fails to extract calls for about 2% (1,017)
of apps in our datasets as a result of bad CRC-32 redundancy
checks and error in unpacking, thus DROIDAPIMINER is
evaluated over the samples in the second-to-last column of
Table I. We also implement classification, which is missing
from the code provided by the authors, using k-NN (with k=3)
since it achieves the best results according to the paper. We use
2/3 of the dataset for training and 1/3 for testing as implemented
by the authors [2]. A summary of the resulting F-measures
obtained using different training and test sets is presented in
Table III.

We set up a number of experiments to thoroughly compare
DROIDAPIMINER to MAMADROID. First, we set up three
experiments in which we train DROIDAPIMINER using a
dataset composed of oldbenign combined with one of the
three oldest malware datasets each (drebin, 2013, and 2014),
and testing on all malware datasets. With this configuration,
the best result (with 2014 and oldbenign as training sets)
amounts to 62% F-measure when tested on the same dataset.

https://www.virustotal.com

Testing Sets

drebin & oldbenign| 2013 & oldbenign 2014 & oldbenign 2015 & oldbenign 2016 & oldbenign

Training Sets [2] Our Work [2] Our Work [2] Our Work [2] Our Work [2] Our Work
drebin & oldbenign 0.32 0.96 0.35 0.96 0.34 0.79 0.30 0.42 0.33 0.43
2013 & oldbenign 0.33 0.93 0.36 0.97 0.35 0.74 0.31 0.36 0.33 0.29
2014 & oldbenign 0.36 0.92 0.39 0.93 0.62 0.95 0.33 0.79 0.37 0.78
drebin & newbenign| 2013 & newbenign 2014 & newbenign 2015 & newbenign 2016 & newbenign

Training Sets [2] Our Work [2] Our Work [2] Our Work [2] Our Work [2] Our Work
2014 & newbenign 0.76 0.99 0.75 0.99 0.92 0.99 0.67 0.89 0.65 0.83
2015 & newbenign 0.68 0.98 0.68 0.98 0.69 0.99 0.77 0.95 0.65 0.90
2016 & newbenign 0.33 0.97 0.35 0.97 0.36 0.99 0.34 0.93 0.36 0.92

TABLE III: Classification performance of DROIDAPIMINER [2] vs MAMADROID (our work).

The F-measure drops to 33% and 39%, respectively, when
tested on samples one year into the future and past. If we use
the same configurations in MAMADROID, in package mode,
we obtain up to 97% F-measure (using 2013 and oldbenign
as training sets), dropping to 74% and 93%, respectively,
one year into the future and into the past. For the datasets
where DROIDAPIMINER achieves its best result (i.e., 2014
and oldbenign), MAMADROID achieves an F-measure of
95%, which drops to respectively, 79% and 93% one year into
the future and the past. The F-measure is stable even two years
into the future and the past at 78% and 92%, respectively.

As a second set of experiments, we train DROIDAPIMINER
using a dataset composed of newbenign combined with one
of the three most recent malware datasets each (2014, 2015,
and 2016). Again, we test DROIDAPIMINER on all malware
datasets. The best result is obtained with the dataset (2014 and
newbenign) used for both testing and training, yielding a F-
measure of 92%, which drops to 67% and 75% one year into the
future and past respectively. Likewise, we use the same datasets
for MAMADROID, with the best results achieved on the same
dataset as DROIDAPIMINER. In package mode, MAMADROID
achieves an F-measure of 99%, which is maintained more than
two years into the past, but drops to respectively, 89% and
83% one and two years into the future.

As summarized in Table III, MAMADROID achieves
significantly higher performance than DROIDAPIMINER in
all but one experiment, with the F-measure being at least 79%
even after two years into the future or the past when datasets
from 2014 or later are used for training. Note that there is only
one setting in which DROIDAPIMINER performs slightly better
than MAMADROID: this occurs when the malicious training
set is much older than the malicious test set. Specifically,
MAMADROID presents low recall in this case: as discussed,
MAMADROID’s classification performs much better when the
training set is not more than two years older than the test set.

F. Runtime Performance

We envision MAMADROID to be integrated in offline
detection systems, e.g., run by Google Play. Recall that
MAMADROID consists of different phases, so in the following,
we review the computational overhead incurred by each of
them, aiming to assess the feasibility of real-world deployment.
We run our experiments on a desktop equipped with an 40-core
2.30GHz CPU and 128GB of RAM, but only use one core and
allocate 16GB of RAM for evaluation.

MAMADROID’s first step involves extracting the call graph
from an apk and the complexity of this task varies significantly

across apps. On average, it takes 9.2s+14 (min 0.02s, max
13m) to complete for samples in our malware sets. Benign
apps usually yield larger call graphs, and the average time to
extract them is 25.4s+63 (min 0.06s, max 18m) per app. Note
that we do not include in our evaluation apps for which we
could not successfully extract the call graph.

Next, we measure the time needed to extract call sequences
while abstracting to families or packages, depending on
MAMADROID’s mode of operation. In family mode, this phase
completes in about 1.3s on average (and at most 11.0s) with both
benign and malicious samples. Abstracting to packages takes
slightly longer, due to the use of 341 packages in MAMADROID.
On average, this extraction takes 1.67s%3.1 for malicious apps
and 1.73s%3.2 for benign samples. As it can be seen, the call
sequence extraction in package mode does not take significantly
more than in family mode.

MAMADROID’s third step includes Markov chain modeling
and feature vector extraction. This phase is fast regardless of
the mode of operation and datasets used. Specifically, with
malicious samples, it takes on average 0.2s£0.3 and 2.5s+3.2
(and at most 2.4s and 22.1s), respectively, with families and
packages, whereas, with benign samples, averages rise to
0.6s40.3 and 6.7s%3.8 (at most 1.7s and 18.4s).

Finally, the last step involves classification, and performance
depends on both the machine learning algorithm employed and
the mode of operation. More specifically, running times are
affected by the number of features for the app to be classified,
and not by the initial dimension of the call graph, or by whether
the app is benign or malicious. Regardless, in family mode,
Random Forests, 1-NN, and 3-NN all take less than 0.01s. With
packages, it takes, respectively, 0.65s, 1.05s, and 0.007s per
app with 1-NN, 3-NN, Random Forests.

Overall, when operating in family mode, malware and
benign samples take on average, 10.7s and 27.3s respectively
to complete the entire process, from call graph extraction
to classification. Whereas, in package mode, the average
completion times for malware and benign samples are 13.37s
and 33.83s respectively. In both modes of operation, time is
mostly (> 80%) spent on call graph extraction.

We also evaluate the runtime performance of
DROIDAPIMINER [2]. Its first step, i.e., extracting API
calls, takes 0.7s%1.5 (min 0.01s, max 28.4s) per app in our
malware datasets. Whereas, it takes on average 13.2s1+22.2
(min 0.01s, max 222s) per benign app. In the second phase,
i.e., frequency and data flow analysis, it takes, on average,
4.2s per app. Finally, classification using 3-NN is very fast:
0.002s on average. Therefore, in total, DROIDAPIMINER takes

respectively, 17.4s and 4.9s for a complete execution on one
app from our benign and malware datasets, which while faster
than MAMADROID, achieves significantly lower accuracy.

In conclusion, our experiments show that our prototype
implementation of MAMADROID is scalable enough to be
deployed. Assuming that, everyday, a number of apps in the
order of 10,000 are submitted to Google Play, and using the
average execution time of benign samples in family (27.3s)
and package (33.83s) modes, we estimate that it would take
less than an hour and a half to complete execution of all apps
submitted daily in both modes, with just 64 cores. Note that
we could not find accurate statistics reporting the number of
apps submitted everyday, but only the total number of apps on
Google Play.'? On average, this number increases of a couple
of thousands per day, and although we do not know how many
apps are removed, we believe 10,000 apps submitted every day
is likely an upper bound.

V. DISCUSSION

We now discuss the implications of our results with respect
to the feasibility of modeling app behavior using static analysis
and Markov chains, discuss possible evasion techniques, and
highlight some limitations of our approach.

A. Lessons Learned

Our work yields important insights around the use of API
calls in malicious apps, showing that, by modeling the sequence
of API calls made by an app as a Markov chain, we can
successfully capture the behavioral model of that app. This
allows MAMADROID to obtain high accuracy overall, as well
as to retain it over the years, which is crucial due to the
continuous evolution of the Android ecosystem.

As discussed in Section III, the use of API calls changes
over time, and in different ways across malicious and benign
samples. From our newer datasets, which include samples up
to Spring 2016 (API level 23), we observe that newer APIs
introduce more packages, classes, and methods, while also
deprecating some. Fig. 6, 7(a), and 7(b) show that benign apps
are using more calls than malicious ones developed around
the same time. We also notice an interesting trend in the use
of Android and Google APIs: malicious apps follow the same
trend as benign apps in the way they adopt certain APIs, but
with a delay of some years. This might be a side effect of
Android malware authors’ tendency to repackage benign apps,
adding their malicious functionalities onto them.

Given the frequent changes in the Android framework
and the continuous evolution of malware, systems like
DROIDAPIMINER [2] — being dependent on the presence or
the use of certain API calls — become increasingly less effective
with time. As shown in Table III, malware that uses API calls
released after those used by samples in the training set cannot
be identified by these systems. On the contrary, as shown in
Fig. 11 and 12, MAMADROID detects malware samples that
are / year newer than the training set obtaining an 86% F-
measure (as opposed to 46% with DROIDAPIMINER). After 2
years, the value is still at 75% (42% with DROIDAPIMINER),
dropping to 51% after 4 years.

2http://www.appbrain.com/stats/number-of-android-apps

We argue that the effectiveness of MAMADROID’s classifi-
cation remains relatively high “over the years” owing to Markov
models capturing app behavior. These models tend to be more
robust to malware evolution because abstracting to families or
packages makes the system less susceptible to the introduction
of new API calls. Abstraction allows MAMADROID to capture
newer classes/methods added to the API, since these are
abstracted to already-known families or packages. In case newer
packages are added to the API, and these packages start being
used by malware, MAMADROID only requires adding a new
state to the Markov chains, and probabilities of a transition
from a state to this new state in old apps would be 0. Adding
only a few nodes does not likely alter the probabilities of the
other 341 nodes, thus, two apps created with the same purpose
will not strongly differ in API calls usage if they are developed
using almost consecutive API levels.

We also observe that abstracting to packages provides a
slightly better tradeoff than families. In family mode, the system
is lighter and faster, and actually performs better when there
are more than two years between training and test set samples
However, even though both modes of operation effectively
detect malware, abstracting to packages yields better results
overall. Nonetheless, this does not imply that less abstraction
is always better: in fact, a system that is too granular, besides
incurring untenable complexity, would likely create Markov
models with low-probability transitions, ultimately resulting
in less accurate classification. We also highlight that applying
PCA is a good strategy to preserve high accuracy and at the
same time reducing complexity.

B. Evasion

Next, we discuss possible evasion techniques and how they
can be addressed. One straightforward evasion approach could
be to repackage a benign app with small snippets of malicious
code added to a few classes. However, it is difficult to embed
malicious code in such a way that, at the same time, the
resulting Markov chain looks similar to a benign one. For
instance, our running example from Section II (malware posing
as a memory booster app and executing unwanted commands
as root) is correctly classified by MAMADROID; although most
functionalities in this malware are the same as the original app,
injected API calls generate some transitions in the Markov
chain that are not typical of benign samples.

The opposite procedure — i.e., embedding portions of benign
code into a malicious app — is also likely ineffective against
MAMADROID, since, for each app, we derive the feature vector
from the transition probability between calls over the entire
app. In other words, a malware developer would have to embed
benign code inside the malware in such a way that the overall
sequence of calls yields similar transition probabilities as those
in a benign app, but this is difficult to achieve because if the
sequences of calls have to be different (otherwise there would
be no attack), then the models will also be different.

An attacker could also try to create an app from scratch
with a similar Markov chain to that of a benign app. Because
this is derived from the sequence of abstracted API calls in the
app, it is actually very difficult to create sequences resulting
in Markov chains similar to benign apps while, at the same
time, actually engaging in malicious behavior. Nonetheless, in

http://www.appbrain.com/stats/number-of-android-apps

future work, we plan to systematically analyze the feasibility
of this strategy.

Moreover, attackers could try using reflection, dynamic
code loading, or native code [42]. Because MAMADROID uses
static analysis, it fails to detect malicious code when it is
loaded or determined at runtime. However, MAMADROID can
detect reflection when a method from the reflection package
(java.lang.reflect) is executed. Therefore, we obtain the
correct sequence of calls up to the invocation of the reflection
call, which may be sufficient to distinguish between malware
and benign apps. Similarlyy, MAMADROID can detect the
usage of class loaders and package contexts that can be used
to load arbitrary code, but it is not able to model the code
loaded; likewise, native code that is part of the app cannot be
modeled, as it is not Java and is not processed by Soot. These
limitations are not specific of MAMADROID, but are a problem
of static analysis in general, which can be mitigated by using
MAMADROID alongside dynamic analysis techniques.

Malware developers might also attempt to evade MA-
MADROID by naming their self-defined packages in such a way
that they look similar to that of the android, java, or google
APIs, e.g., creating packages like java.lang.reflect.malware
and java.lang.malware, aiming to confuse MAMADROID into
abstracting them to respectively, java.lang.reflect and
java.lang. However, this is easily prevented by whitelisting
the list of packages from android, java, or google APIs.

Another approach could be using dynamic dispatch so that
a class X in package A is created to extend class Y in package
B with static analysis reporting a call to root() defined in Y as
X.root(), whereas, at runtime Y.root() is executed. This can be
addressed, however, with a small increase in MAMADROID’s
computational cost, by keeping track of self-defined classes
that extend or implement classes in the recognized APIs, and
abstract polymorphic functions of this self-defined class to the
corresponding recognized package, while, at the same time,
abstracting as self-defined overridden functions in the class.

Finally, identifier mangling and other forms of obfuscation
could be used aiming to obfuscate code and hide malicious
actions. However, since classes in the Android framework
cannot be obfuscated by obfuscation tools, malware developers
can only do so for self-defined classes. MAMADROID labels
obfuscated calls as obfuscated so, ultimately, these would
be captured in the behavioral model (and the Markov chain)
for the app. In our sample, we observe that benign apps use
significantly less obfuscation than malicious apps, indicating
that obfuscating a significant number of classes is not a good
evasion strategy since this would likely make the sample more
easily identifiable as malicious.

C. Limitations

MAMADROID requires a sizable amount of memory in
order to perform classification, when operating in package mode,
working on more than 100,000 features per sample. The quantity
of features, however, can be further reduced using feature
selection algorithms such as PCA. As explained in Section IV
when we use 10 components from the PCA the system performs
almost as well as the one using all the features; however, using
PCA comes with a much lower memory complexity in order
to run the machine learning algorithms, because the number of

dimensions of the features space where the classifier operates
is remarkably reduced.

Soot [52], which we use to extract call graphs, fails to
analyze some apks. In fact, we were not able to extract call
graphs for a fraction (4.6%) of the apps in the original datasets
due to scripts either failing to apply the jb phase, which is
used to transform Java bytecode to the primary intermediate
representation (i.e., jimple) of Soot or not able to open the
apk. Even though this does not really affect the results of
our evaluation, one could avoid it by using a different/custom
intermediate representation for the analysis or use different
tools to extract the call graphs.

In general, static analysis methodologies for malware
detection on Android could fail to capture the runtime en-
vironment context, code that is executed more frequently, or
other effects stemming from user input [5]. These limitations
can be addressed using dynamic analysis, or by recording
function calls on a device. Dynamic analysis observes the live
performance of the samples, recording what activity is actually
performed at runtime. Through dynamic analysis, it is also
possible to provide inputs to the app and then analyze the
reaction of the app to these inputs, going beyond static analysis
limits. To this end, we plan to integrate dynamic analysis to
build the models used by MAMADROID as part of future work.

VI. RELATED WORK

Over the past few years, Android security has attracted a
wealth of work by the research community. In this section,
we review (i) program analysis techniques focusing on general
security properties of Android apps, and then (ii) systems that
specifically target malware on Android.

A. Program Analysis

Previous work on program analysis applied to Android
security has used both static and dynamic analysis. With
the former, the program’s code is decompiled in order to
extract features without actually running the program, usually
employing tools such as Dare [41] to obtain Java bytecode. The
latter involves real-time execution of the program, typically in
an emulated or protected environment.

Static analysis techniques include work by Felt et al. [21],
who analyze API calls to identify over-privileged apps, while
Kirin [20] is a system that examines permissions requested
by apps to perform a lightweight certification, using a set
of security rules that indicate whether or not the security
configuration bundled with the app is safe. RiskRanker [28]
aims to identify zero-day Android malware by assessing
potential security risks caused by untrusted apps. It sifts
through a large number of apps from Android markets and
examines them to detect certain behaviors, such as encryption
and dynamic code loading, which form malicious patterns and
can be used to detect stealthy malware. Other methods, such
as CHEX [37], use data flow analysis to automatically vet
Android apps for vulnerabilities. Static analysis has also been
applied to the detection of data leaks and malicious data flows
from Android apps [6], [34], [35], [62].

DroidScope [59] and TaintDroid [19] monitor run-time app
behavior in a protected environment to perform dynamic taint
analysis. DroidScope performs dynamic taint analysis at the

machine code level, while TaintDroid monitors how third-party
apps access or manipulate users’ personal data, aiming to detect
sensitive data leaving the system. However, as it is unrealistic to
deploy dynamic analysis techniques directly on users’ devices,
due to the overhead they introduce, these are typically used
offline [45], [50], [67]. ParanoidAndroid [44] employs a virtual
clone of the smartphone, running in parallel in the cloud and
replaying activities of the device — however, even if minimal
execution traces are actually sent to the cloud, this still takes a
non-negligible toll on battery life.

Recently, hybrid systems like IntelliDroid [56] have also
been proposed that use input generators, producing inputs
specific to dynamic analysis tools. Other work combining static
and dynamic analysis include [8], [25], [31], [58].

B. Android Malware Detection

A number of techniques have used signatures for Android
malware detection. NetworkProfiler [18] generates network
profiles for Android apps and extracts fingerprints based on such
traces, while work in [12] obtains resource-based metrics (CPU,
memory, storage, network) to distinguish malware activity from
benign one. Chen et al. [15] extract statistical features, such
as permissions and API calls, and extend their vectors to add
dynamic behavior-based features. While their experiments show
that their solution outperforms, in terms of accuracy, other
antivirus systems, Chen et al. [15] indicate that the quality of
their detection model critically depends on the availability of
representative benign and malicious apps for training. Similarly,
ScanMe Mobile [64] uses the Google Cloud Messaging Service
(GCM) to perform static and dynamic analysis on apks found
on the device’s SD card.

The sequences of system calls have also been used to detect
malware in both desktop and Android environments. Hofmeyr
et al. [30] demonstrate that short sequences of system calls
can be used as a signature to discriminate between normal
and abnormal behavior of common UNIX programs. Signature-
based methods, however, can be evaded using polymorphism
and obfuscation, as well as by call re-ordering attacks [36], even
though quantitative measures, such as similarity analysis, can
be used to address some of these attacks [48]. MAMADROID
inherits the spirit of these approaches, proposing a statistical
method to model app behavior that is more robust against
evasion attempts.

In the Android context, Canfora et al. [11] use the sequences
of three system calls (extracted from the execution traces of
apps under analysis) to detect malware. This approach models
specific malware families, aiming to identify additional samples
belonging to such families. In contrast, MAMADROID’s goal
is to detect previously-unseen malware, and we also show that
our system can detect new malware families that even appear
years after the system has been trained. In addition, using strict
sequences of system or API calls can be easily evaded by
malware authors who could add unnecessary calls to effectively
evade detection. Conversely, MAMADROID builds a behavioral
model of an Android app, which makes it robust to this type
of evasion.

Dynamic analysis has also been applied to detect Android
malware by using predefined scripts of common inputs that will
be performed when the device is running. However, this might

be inadequate due to the low probability of triggering malicious
behavior, and can be side-stepped by knowledgeable adversaries,
as suggested by Wong and Lie [56]. Other approaches include
random fuzzing [38], [63] and concolic testing [3], [26].
Dynamic analysis can only detect malicious activities if the code
exhibiting malicious behavior is actually running during the
analysis. Moreover, according to [54], mobile malware authors
often employ emulation or virtualization detection strategies to
change malware behavior and eventually evade detection.

Aiming to complement static and dynamic analysis tools,
machine learning techniques have also been applied to assist
Android malware detection. Droidmat [57] uses API call tracing
and manifest files to learn features for malware detection,
while Gascon et al. [24] rely on embedded call graphs. Droid-
Miner [60] studies the program logic of sensitive Android/Java
framework API functions and resources, and detects malicious
behavior patterns. MAST [14] statically analyzes apps using
features such as permissions, presence of native code, and intent
filters and measures the correlation between multiple qualitative
data. Crowdroid [10] relies on crowdsourcing to distinguish
between malicious and benign apps by monitoring system calls.
AppContext [61] models security-sensitive behavior, such as
activation events or environmental attributes, and uses SVM
to classify these behaviors, while RevealDroid [23] employs
supervised learning and obfuscation-resilient methods targeting
API usage and intent actions to identify their families.

DREBIN [5] automatically deduces detection patterns and
identifies malicious software directly on the device, performing
a broad static analysis. This is achieved by gathering numerous
features from the manifest file as well as the app’s source code
(API calls, network addresses, permissions). Malevolent behav-
ior is reflected in patterns and combinations of extracted features
from the static analysis: for instance, the existence of both
SEND_SMS permission and the android.hardware.telephony
component in an app might indicate an attempt to send premium
SMS messages, and this combination can eventually constitute
a detection pattern.

In Section IV, we have already introduced, and compared
against, DROIDAPIMINER [2]. This system relies on the top-
169 API calls that are used more frequently in the malware than
in the benign set, along with data flow analysis on calls that
are frequent in both benign and malicious apps, but occur up
to 6% more in the latter. As shown in our evaluation, using the
most common calls observed during training requires constant
retraining, due to the evolution of both malware and the Android
API. On the contrary, MAMADROID can effectively model both
benign and malicious Android apps, and perform an efficient
classification on them. Compared to DROIDAPIMINER, our
approach is more resilient to changes in the Android framework
than DROIDAPIMINER, resulting in a less frequent need to
re-train the classifier.

Overall, compared to state-of-the-art systems like
DREBIN [5] and DROIDAPIMINER [2], MAMADROID is more
generic and robust as its statistical modeling does not depend
on specific app characteristics, but can actually be run on any
app created for any Android API level.

Finally, also related to MAMADROID are Markov-chain
based models for Android malware detection. Chen et al. [16]
dynamically analyze system- and developer-defined actions

from intent messages (used by app components to communicate
with each other at runtime), and probabilistically estimate
whether an app is performing benign or malicious actions
at run time, but obtain low accuracy overall. Canfora et al. [13]
use a Hidden Markov model (HMM) to identify malware
samples belonging to previously observed malware families,
whereas, MAMADROID can detect previously unseen malware,
not relying on specific malware families.

VII. CONCLUSION

This paper presented MAMADROID, an Android malware
detection system based on modeling the sequences of API calls
as Markov chains. Our system is designed to operate in one of
two modes, with different granularities, by abstracting API calls
to either families or packages. We ran an extensive experimental
evaluation using, to the best of our knowledge, the largest
malware dataset ever analyzed in an Android malware detection
research paper, and aiming at assessing both the accuracy
of the classification (using F-measure, precision, and recall)
and runtime performances. We showed that MAMADROID
effectively detects unknown malware samples developed earlier
or around the same time as the samples on which it is trained
(F-measure up to 99%). It also maintains good detection
performance: one year after the model has been trained the
F-measure value is 86%, and after two years it is 75%.

We compared MAMADROID to DROIDAPIMINER [2], a
state-of-the-art system based on API calls frequently used
by malware, showing that, not only does MAMADROID
outperforms DROIDAPIMINER when trained and tested on
the same datasets, but that it is also much more resilient
over the years to changes in the Android API. Overall, our
results demonstrate that the type of statistical behavioral models
introduced by MAMADROID are more robust than traditional
techniques, highlighting how our work can form the basis of
more advanced detection systems in the future. As part of
future work, we plan to further investigate the resilience to
possible evasion techniques, focusing on repackaged malicious
apps as well as injection of API calls to maliciously alter
Markov models. We also plan to explore the use of finer-grained
abstractions as well as the possibility to seed the behavioral
modeling performed by MAMADROID with dynamic instead
of static analysis. Due to the large size of the data, we have
not made them readily available online but both the datasets
and the feature vectors can be obtained upon request.

Acknowledgments. We wish to thank the anonymous reviewers
for their feedback, our shepherd Amir Houmansadr for his help
in improving our paper, and Yousra Aafer for kindly sharing
the DROIDAPIMINER source code with us. We also wish
to thank Yanick Fratantonio for his comments on an early
draft of the paper. This research was supported by the EPSRC
under grant EP/N008448/1, by an EPSRC-funded “Future
Leaders in Engineering and Physical Sciences” award, a Xerox
University Affairs Committee grant, and by a small grant from
GCHQ. Enrico Mariconti was supported by the EPSRC under
grant 1490017, while Lucky Onwuzurike was funded by the
Petroleum Technology Development Fund (PTDF).

(1]

(2]

(3]

(4]

(5]

(71

(8]

(9]
[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

Google Play has hundreds of Android apps that contain malware. http://
www.trustedreviews.com/news/malware-apps-downloaded- google-play,
2016.

Y. Aafer, W. Du, and H. Yin. DroidAPIMiner: Mining API-Level
Features for Robust Malware Detection in Android. In SecureComm,
2013.

S. Anand, M. Naik, M. J. Harrold, and H. Yang. Automated Concolic
Testing of Smartphone Apps. In ACM Symposium on the Foundations
of Software Engineering (FSE), 2012.

P. Andriotis, M. A. Sasse, and G. Stringhini. Permissions snapshots:
Assessing users’ adaptation to the android runtime permission model. In
IEEE Workshop on Information Forensics and Security (WIFS), 2016.

D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck.
DREBIN: Effective and Explainable Detection of Android Malware
in Your Pocket. In Annual Symposium on Network and Distributed
System Security (NDSS), 2014.

S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel. FlowDroid: Precise Context, Flow, Field,
Object-sensitive and Lifecycle-aware Taint Analysis for Android Apps.
In ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2014.

S. Bernard, S. Adam, and L. Heutte. Using random forests for
handwritten digit recognition. In Ninth International Conference on
Document Analysis and Recognition (ICDAR), 2007.

R. Bhoraskar, S. Han, J. Jeon, T. Azim, S. Chen, J. Jung, S. Nath,
R. Wang, and D. Wetherall. Brahmastra: Driving Apps to Test the
Security of Third-Party Components. In USENIX Security Symposium,
2014.

L. Breiman. Random forests. Machine Learning, 45, 2001.

1. Burguera, U. Zurutuza, and S. Nadjm-Tehrani. Crowdroid: Behavior-
based Malware Detection System for Android. In ACM Workshop on
Security and Privacy in Smartphones and Mobile Devices (SPSM), 2011.

G. Canfora, E. Medvet, F. Mercaldo, and C. A. Visaggio. Detecting
Android Malware Using Sequences of System Calls. In Workshop on
Software Development Lifecycle for Mobile, 2015.

G. Canfora, E. Medvet, F. Mercaldo, and C. A. Visaggio. Acquiring
and Analyzing App Metrics for Effective Mobile Malware Detection.
In IWSPA, 2016.

G. Canfora, F. Mercaldo, and C. A. Visaggio. An HMM and Structural
Entropy based Detector for Android malware: An Empirical Study.
Computers & Security, 61, 2016.

S. Chakradeo, B. Reaves, P. Traynor, and W. Enck. MAST: Triage for
Market-scale Mobile Malware Analysis. In ACM Conference on Security
and Privacy in Wireless and Mobile Networks (WiSec), 2013.

S. Chen, M. Xue, Z. Tang, L. Xu, and H. Zhu. StormDroid: A
Streaminglized Machine Learning-Based System for Detecting Android
Malware. In AsiaCCS, 2016.

Y. Chen, M. Ghorbanzadeh, K. Ma, C. Clancy, and R. McGwier. A
hidden Markov model detection of malicious Android applications at
runtime. In Wireless and Optical Communication Conference (WOCC),
2014.

J. Clay. Continued Rise in Mobile Threats for 2016. http://blog.
trendmicro.com/continued-rise-in-mobile-threats-for-2016/, 2016.

S. Dai, A. Tongaonkar, X. Wang, A. Nucci, and D. Song. NetworkProfiler:
Towards automatic fingerprinting of Android apps. In IEEE INFOCOM,
2013.

W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth. TaintDroid: An Information-
Flow Tracking System for Realtime Privacy Monitoring on Smartphones.
ACM Trans. Comput. Syst., 32(2), 2014.

W. Enck, M. Ongtang, and P. McDaniel. On Lightweight Mobile
Phone Application Certification. In ACM Conference on Computer and
Communications Security (CCS), 2009.

A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android
Permissions Demystified. In ACM Conference on Computer and
Communications Security (CCS), 2011.

E. Fix and J. Hodges. Discriminatory analysis, non-parametric discrimi-
nation. USAF School of Aviation Medicine, 31, 1951.

http://www.trustedreviews.com/news/malware-apps-downloaded-google-play
http://www.trustedreviews.com/news/malware-apps-downloaded-google-play
http://blog.trendmicro.com/continued-rise-in-mobile-threats-for-2016/
http://blog.trendmicro.com/continued-rise-in-mobile-threats-for-2016/

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

J. Garcia, M. Hammad, B. Pedrood, A. Bagheri-Khaligh, and S. Malek.
Obfuscation-resilient, efficient, and accurate detection and family
identification of android malware. Department of Computer Science,
George Mason University, Tech. Rep, 2015.

H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck. Structural Detection
of Android Malware Using Embedded Call Graphs. In ACM Workshop
on Artificial Intelligence and Security (AlSec), 2013.

X. Ge, K. Taneja, T. Xie, and N. Tillmann. DyTa: Dynamic Symbolic
Execution Guided with Static Verification Results. In International
Conference on Software Engineering (ICSE), 2011.

P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated
Random Testing. SIGPLAN Not., 40(6), 2005.

M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and
M. C. Rinard. Information Flow Analysis of Android Applications in
DroidSafe. In Annual Symposium on Network and Distributed System
Security (NDSS), 2015.

M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang. RiskRanker: Scalable
and Accurate Zero-day Android Malware Detection. In International
Conference on Mobile Systems, Applications, and Services (MobiSys),
2012.

M. Hearst, S. Dumais, E. Osman, J. Platt, and B. Scholkopf. Support
Vector Machines. IEEE Intelligent Systems and their applications, 13,
1998.

S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detection using
sequences of system calls. Journal of Computer Security, 6(3), 1998.

Y. Z. X. Jiang. Detecting passive content leaks and pollution in android
applications. In Annual Symposium on Network and Distributed System
Security (NDSS), 2013.

1. Jolliffe. Principal Component Analysis. John Wiley & Sons, Ltd,
2002.

M. J. Kearns. The computational complexity of machine learning. MIT
press, 1990.

J. Kim, Y. Yoon, K. Yi, J. Shin, and S. Center. ScanDal: Static analyzer
for detecting privacy leaks in android applications. In MoST, 2012.
W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer. Android Taint
Flow Analysis for App Sets. In SOAP, 2014.

C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X.-y. Zhou, and
X. Wang. Effective and Efficient Malware Detection at the End Host.
In USENIX security symposium, 2009.

L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. CHEX: Statically Vetting
Android Apps for Component Hijacking Vulnerabilities. In ACM
Conference on Computer and Communications Security (CCS), 2012.
A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An Input Generation
System for Android Apps. In Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), 2013.

J. R. Norris. Markov chains. Cambridge University Press, 1998.

J. Oberheide and C. Miller.
SummerCon, 2012.

D. Octeau, S. Jha, and P. McDaniel. Retargeting Android Applications
to Java Bytecode. In ACM Symposium on the Foundations of Software
Engineering (FSE), 2012.

S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna.
Execute This! Analyzing Unsafe and Malicious Dynamic Code Loading
in Android Applications. In Annual Symposium on Network and
Distributed System Security (NDSS), 2014.

1. Polakis, M. Diamantaris, T. Petsas, F. Maggi, and S. Ioannidis.
Powerslave: Analyzing the Energy Consumption of Mobile Antivirus
Software. In DIMVA, 2015.

G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos. Paranoid
Android: Versatile Protection for Smartphones. In Annual Computer
Security Applications Conference (ACSAC), 2010.

V. Rastogi, Y. Chen, and X. Jiang. DroidChameleon: Evaluating Android
Anti-malware Against Transformation Attacks. In AsiaCCS, 2013.

B. P. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru, and I. Molloy.
Android Permissions: A Perspective Combining Risks and Benefits. In

Dissecting the Android Bouncer. In

[47]

[48]

[49]

[50]

(511

[52]

[53]

[54]

[55]

[56]

[571

[58]

[591

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

ACM Symposium on Access Control Models and Technologies (SACMAT),

2012.
P. Schulz. Code protection in android. Insititute of Computer Science,

Rheinische Friedrich-Wilhelms-Universitgt Bonn, Germany, 110, 2012.

M. K. Shankarapani, S. Ramamoorthy, R. S. Movva, and S. Mukkamala.
Malware detection using assembly and API call sequences. Journal in
Computer Virology, 7(2), 2011.

Statista. Global mobile OS market share in sales to end users from
1st quarter 2009 to 1st quarter 2016. http://www.statista.com/statistics/
266136/global-market-share-held-by-smartphone-operating-systems/,
2016.

K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro. CopperDroid: Automatic
Reconstruction of Android Malware Behaviors. In Annual Symposium
on Network and Distributed System Security (NDSS), 2015.

The Register. Google AdSense abused to distribute Android spy-
ware. http://www.theregister.co.uk/2016/08/15/android_trojan_abuses_
google_adsense/, 2016.

R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan.
Soot - a Java Bytecode Optimization Framework. In Conference of the
Centre for Advanced Studies on Collaborative Research, 1999.

D. Venkatesan. Android.Bankosy: All ears on voice
call-based 2FA. http://www.symantec.com/connect/blogs/
androidbankosy-all-ears-voice-call-based-2fa, 2016.

T. Vidas and N. Christin. Evading android runtime analysis via sandbox
detection. In AsiaCCS, 2014.

N. Viennot, E. Garcia, and J. Nieh. A measurement study of google
play. 42(1), 2014.

M. Y. Wong and D. Lie. IntelliDroid: A Targeted Input Generator for
the Dynamic Analysis of Android Malware. In Annual Symposium on
Network and Distributed System Security (NDSS), 2016.

D. J. Wu, C. H. Mao, T. E. Wei, H. M. Lee, and K. P. Wu. DroidMat:
Android Malware Detection through Manifest and API Calls Tracing.
In Asia JCIS, 2012.

M. Xia, L. Gong, Y. Lyu, Z. Qi, and X. Liu. Effective Real-Time
Android Application Auditing. In IEEE Symposium on Security and
Privacy, 2015.

L. K. Yan and H. Yin. DroidScope: Seamlessly Reconstructing the OS
and Dalvik Semantic Views for Dynamic Android Malware Analysis.
In USENIX Security Symposium, 2012.

C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P. Porras. Droidminer: Au-
tomated mining and characterization of fine-grained malicious behaviors
in Android applications. In ESORICS, 2014.

W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck. AppContext:
Differentiating Malicious and Benign Mobile App Behaviors Using
Context. In International Conference on Software Engineering (ICSE),
2015.

Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang. Applntent:
Analyzing Sensitive Data Transmission in Android for Privacy Leakage
Detection. In ACM Conference on Computer and Communications
Security (CCS), 2013.

H. Ye, S. Cheng, L. Zhang, and F. Jiang. DroidFuzzer: Fuzzing the
Android Apps with Intent-Filter Tag. In International Conference on
Advances in Mobile Computing and Multimedia (MoMM), 2013.

H. Zhang, Y. Cole, L. Ge, S. Wei, W. Yu, C. Lu, G. Chen, D. Shen,
E. Blasch, and K. D. Pham. ScanMe Mobile: A Cloud-based Android
Malware Analysis Service. SIGAPP Appl. Comput. Rev., 16(1), 2016.
N. Zhang, K. Yuan, M. Naveed, X. Zhou, and X. Wang. Leave me
alone: App-level protection against runtime information gathering on
Android. In IEEE Symposium on Security and Privacy, 2015.

Y. Zhou and X. Jiang. Dissecting Android Malware: Characterization
and Evolution. In IEEE Symposium on Security and Privacy, 2012.

Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, You, Get Off of My
Market: Detecting Malicious Apps in Official and Alternative Android

Markets. In Annual Symposium on Network and Distributed System
Security (NDSS), 2012.

http://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
http://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
http://www.theregister.co.uk/2016/08/15/android_trojan_abuses_google_adsense/
http://www.theregister.co.uk/2016/08/15/android_trojan_abuses_google_adsense/
http://www.symantec.com/connect/blogs/androidbankosy-all-ears-voice-call-based-2fa
http://www.symantec.com/connect/blogs/androidbankosy-all-ears-voice-call-based-2fa

	I Introduction
	II The MaMaDroid System
	II-A Overview
	II-B Call Graph Extraction
	II-C Sequence Extraction
	II-D Markov-chain Based Modeling
	II-E Classification

	III Datasets
	IV Evaluation
	IV-A Preliminaries
	IV-B Detection Performance
	IV-C Detection Over Time
	IV-D Case Studies of False Positives and Negatives
	IV-E MaMaDroid vs DroidAPIMiner
	IV-F Runtime Performance

	V Discussion
	V-A Lessons Learned
	V-B Evasion
	V-C Limitations

	VI Related Work
	VI-A Program Analysis
	VI-B Android Malware Detection

	VII Conclusion
	References

