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Abstract. Web-based systems are often a composition of infrastruc-
ture components, such as web servers and databases, and of application-
specific code, such as HTML-embedded scripts and server-side applica-
tions. While the infrastructure components are usually developed by ex-
perienced programmers with solid security skills, the application-specific
code is often developed under strict time constraints by programmers
with little security training. As a result, vulnerable web-applications are
deployed and made available to the Internet at large, creating easily-
exploitable entry points for the compromise of entire networks.
Web-based applications often rely on back-end database servers to man-
age application-specific persistent state. The data is usually extracted by
performing queries that are assembled using input provided by the users
of the applications. If user input is not sanitized correctly, it is possible
to mount a variety of attacks that leverage web-based applications to
compromise the security of back-end databases. Unfortunately, it is not
always possible to identify these attacks using signature-based intrusion
detection systems, because of the ad hoc nature of many web-based ap-
plications. Signatures are rarely written for this class of applications due
to the substantial investment of time and expertise this would require.
We have developed an anomaly-based system that learns the profiles of
the normal database access performed by web-based applications using
a number of different models. These models allow for the detection of
unknown attacks with reduced false positives and limited overhead. In
addition, our solution represents an improvement with respect to previ-
ous approaches because it reduces the possibility of executing SQL-based
mimicry attacks.
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1 Introduction

Web-based applications have become a popular way to provide access to services
and dynamically-generated information. Even network devices and traditional
applications (such as mail servers) often provide web-based interfaces that are
used for administration as well as configuration.

Web-based applications are implemented using a number of server-side ex-
ecutable components, such as CGI programs and HTML-embedded scripting



code, that access back-end systems, such as databases1. For example, a popular
platform to develop web-based applications is a combination of the Linux oper-
ating system, the Apache web server, the MySQL database engine, and the PHP
language interpreter, which, together, are referred to as a “LAMP” system.

Unfortunately, while the developers of the software infrastructure (i.e., the
developers of web servers and database engines) usually have a deep understand-
ing of the security issues associated with the development of critical software,
the developers of web-based applications often have little or no security skills.
These developers mostly focus on the functionality to be provided to the end-
user and often work under strict time constraints, without the resources (or the
knowledge) necessary to perform a thorough security analysis of the applications
being developed. The result is that poorly-developed code, riddled with security
flaws, is deployed and made accessible to the whole Internet.

Because of their immediate accessibility and their poor security, web-based
applications have become popular attack targets and one of the main avenues by
which the security of systems and networks are compromised. In addition, the
large installation base makes both web applications and servers a privileged tar-
get for worm programs that exploit web-related vulnerabilities to spread across
networks [6].

Existing prevention systems are often insufficient to protect this class of
applications, because the security mechanisms provided are either not well-
understood or simply disabled by the web developers “to get the job done.”
Existing signature-based intrusion detection systems are not sufficient either.
Web-applications often implement custom, site-specific services for which there
is no known signature, and organizations are often unwilling or unable to commit
the substantial time and expertise required to write reliable, high quality signa-
tures. Therefore, prevention mechanisms and signature-based detection systems
should be complemented by anomaly detection systems, which learn the nor-
mal usage profiles associated with web-based applications and identify attacks
as anomalous deviations from the established profiles.

This paper presents an anomaly detection approach for the detection of at-
tacks that exploit vulnerabilities in Web-based applications to compromise a
back-end database. Our approach uses multiple models to characterize the pro-
files of normal access to the database. These profiles are learned automatically
during a training phase by analyzing a number of sample database accesses.
Then, during the detection phase, the system is able to identify anomalous
queries that might be associated with an attack.

We developed an intrusion detection system based on our approach by lever-
aging an object-oriented framework for the development of anomaly detection
systems that we implemented as part of our previous research [1]. The framework
allowed us to implement a working system with reduced effort. The evaluation

1 Web-based applications also use client-side execution mechanisms, such as JavaScript
and ActiveX, to create richer user-interfaces. However, hereinafter we focus only on
the server-side part of web-based applications.



of our preliminary prototype shows that our approach is able to detect unknown
attacks with a limited number of false positives.

This paper is structured as follows. Section 2 discusses several classes of
attacks against database systems. Section 3 discusses related work. Section 4
presents our intrusion detection tool. Section 5 describes the anomaly detec-
tion models used to characterize normal behavior. Next, Section 6 discusses the
evaluation of our tool. Finally, Section 7 draws conclusions and outlines future
work.

2 SQL-based attacks

In this paper we consider three classes of SQL-based attacks. SQL injection,
which allows the attacker to inject strings into the application that are inter-
preted as SQL statements, Cross-site scripting, which allows for the execution
of client-side code in privileged contexts, and data-centric attacks, which allow
the attacker to insert data which are not part of the expected value range into
the database.

2.1 SQL Injection

SQL injection is a class of attacks where un-sanitized user input is able to change
the structure of an SQL query so that when it is executed it has an unintended
effect on the database. SQL injection is made possible by the fact that SQL
queries are usually assembled by performing a series of string concatenations of
static strings and variables. If the variables used in the creation of the query
are under the control of the user, she might be able to change the meaning of
the query in an undesirable way. Consider a web-based application that lets the
user list all her registered credit cards of a given type. The pseudocode for this
functionality might be as follows:

uname = getAuthenticatedUser()

cctype = getUserInput()
result = sql("SELECT nb FROM creditcards WHERE user=’"

+ uname + "’ AND type=’" + cctype +"’;")

print(result)

If the user bob does a search for all his VISA cards the following query would
be executed: SELECT nb FROM creditcards WHERE user=’bob’ AND type=’VISA’;.
This example code contains an SQL injection vulnerability. If Bob wants to
view all the credit cards belonging to user alice he could ask for a list of
cards of type ’ OR user =’alice. This would cause the following query to
be executed: SELECT nb FROM creditcards WHERE user=’bob’ AND type=’’

OR user=’alice’;. This query returns a list of all Alice’s credit cards to the
attacker.

The correct implementation of the application shown above should not allow
data supplied by the user to change the structure of the query. In general, the
user-supplied part of the SQL query should not be interpreted as SQL keywords,



table names, field names or operators by the SQL server. The remaining parts of
the SQL query, which we will refer to as constants, consist of quoted strings and
numbers. Before utilizing user data as constants care must be taken to ensure
that all quotes in user-supplied strings are escaped before inserting them into the
SQL query. Similarly, user-supplied numbers must be checked to verify that they
are numbers and not strings. In the example above, SQL injection is possible
because the string cctype is not properly escaped before it is inserted into the
query.

2.2 Cross Site Scripting

Cross site scripting attacks (XSS), are an important class of attacks against
web-based applications. These attacks exploit trust relationships between web
servers and web browsers by injecting a script (often written in JavaScript) into
a server that is not under the control of the attacker. JavaScript [8] is a scripting
language developed by Netscape to create interactive HTML pages. In most
cases, JavaScript code is embedded in HTML code. When a JavaScript-enabled
browser downloads a page, it parses, compiles, and executes the script. As with
other mobile code schemes, malicious JavaScript programs can take advantage of
the fact that they are executed in a foreign environment that contains sensitive
information.

Existing JavaScript security mechanisms are based on sand-boxing, which
only allows the code to perform a restricted set of operations. JavaScript pro-
grams are treated as untrusted software components that have access to a limited
number of resources within the browser. The shortcoming of this solution is that
scripts may conform to the sand-box policy, but still violate the security of the
system.

The general outline of a cross site scripting attack is the following. First,
a malicious user uploads HTML code containing JavaScript to a web service.
Next, if the uploaded code is viewable by other users, the malicious script will
be executed in the victims’ browsers. Since the script originates from the web
server it is run with the same privileges as legitimate scripts originating from the
server. This is a problem if the victim has a trust relationship with the domain
hosting the web server, since the malicious script could be able to access sensitive
data associated with that domain. Often these kinds of attacks are used to steal
login credentials or other personal information from users.

If data submitted by the users of a web-based application is inserted into a
database, cross-site scripting attempts can be observed at the database level and
can be considered a data-centric attack. Since the malicious scripts are visible
in the SQL queries when the data is inserted into the database, it is possible to
detect cross site scripting attempts by observing all values as they are inserted
and alert if any sign of a script is detected.



2.3 Other Data-centric Attacks

Other classes of attacks can also be detected by looking at the query constants.
For instance, it is often the case that a certain database field should only take on
a limited number of values. A usertype field might have the values of Employee
or Contractor. If a usertype of xxx is seen, this might be evidence of an attack.

A more complex data-centric attack is the two-step SQL injection attack. In
this case, the attacker inserts a specially crafted string into the database that
causes an SQL injection when it is processed at a later time. As an example of
this attack, consider the following scenario. A web site allows users to sign up
with whatever username they desire. The web site periodically deletes inactive
users with the following script:

old = now() - 3 months
users = sql("SELECT uname FROM users

WHERE last_login < "+old+";")
for u in users:

sql("DELETE FROM users WHERE uname=’" + u + "’;")

If a user is allowed to sign up with any username this code is vulnerable to a
two-step SQL injection attack. The attacker first creates a user named ’ OR ’1’

= ’1. Assuming the user creation code is free from SQL injection vulnerabili-
ties, the system correctly creates a new user with the following SQL statement:
INSERT INTO USERS VALUES (’\’ OR \’1\’ = \’1’);. Note that this is not
an SQL injection attack since all user supplied quotes are properly escaped. The
true attack is executed when the periodical cleanup script is run and the script
tries to delete this user. Because of the carefully selected username, the script
generates the following query to delete the user: DELETE FROM users WHERE

uname=’’ OR ’1’ = ’1’;. Since the expression ’1’ = ’1’ is always true, this
statement would delete all users in the database.

3 Related Work

Learning-based anomaly detection represents a class of approaches that relies
on training data to build profiles of the normal, benign behavior of users and
applications. Various types of learning-based anomaly detection techniques have
been proposed to analyze different data streams. A common approach is to use
data-mining techniques to characterize network traffic. For example, in [16] the
authors apply clustering techniques to unlabeled network traces to identify intru-
sion patterns. Statistical techniques have also been used to model the behavior
of network worms [14]. Other approaches use statistical analysis to characterize
user behavior. For example, the seminal work by Denning builds user profiles
using login times and the actions that users perform [7].

A particular class of learning-based anomaly detection approaches focuses
on the characteristics of specific applications and the protocols they use. For
example, in [9] and [23] sequence analysis is applied to system calls produced
by specific applications in order to identify “normal” system call sequences for a
certain application. These application-specific profiles are then used to identify



attacks that produce previously unseen sequences. As another example, in [15]
the authors use statistical analysis of network traffic to learn the normal be-
havior of network-based applications. This is done by analyzing both packet
header information (e.g., source/destination ports, packet size) and the contents
of application-specific protocols.

Our approach is similar to these techniques because it characterizes the be-
nign, normal use of specific programs, that is, databases that are accessed by
web-based applications. However, our approach differs in two ways. First of all,
we employ a number of different models to characterize the behavior of web-
based applications. By using multiple models it is possible to reduce the suscep-
tibility of the detection process to mimicry attacks [22,20]. Second, the models
target specific types of applications and, therefore, they allow for more focused
analysis of the data transferred between the client (the attacker) and the server-
side program (the victim). This is an advantage of application-specific intrusion
detection in general [11] and of web-based intrusion detection in particular [12].

The detection of web-based attacks has recently received considerable atten-
tion because of the increasingly critical role that web-based services are playing.
For example, in [2] the authors present a system that analyzes web logs looking
for patterns of known attacks. A different type of analysis is performed in [3]
where the detection process is integrated with the web server application itself.
In [21], a misuse-based system that operates on multiple event streams (i.e.,
network traffic, system call logs, and web server logs) is proposed. Also, a com-
mercial systems exists that analyzes HTTP requests [24]. Systems that focus on
web-based attacks show that, by taking advantage of the specificity of a particu-
lar application domain, it is possible to achieve better detection results. However,
these systems are mostly misuse-based and therefore suffer from the problem of
not being able to detect attacks that have not been previously modeled. Our
approach is similar to these systems because it focuses on web-based applica-
tions. However, the goal of our tool is to perform autonomous, learning-based
anomaly detection requiring minimal human oversight. The tool can be deployed
on a host that contains custom-developed server-side programs and are able to
automatically derive models of the manner in which these programs access a
back-end database. These models are then used to detect known and unknown
attacks.

Prior work by Lee, et al. has considered the application of learning techniques
to the problem of identifying web-based attacks on databases [13]. Lee primar-
ily focuses on recognizing SQL injection attacks as queries that are structurally
dissimilar from normal queries observed during a training period. SQL injec-
tion vulnerabilities appear in server-side executables (e.g., applications invoked
through the Common Gateway Interface) when values supplied by the client are
used directly to assemble SQL queries issued by the executable, with little or no
input validation checks.

While the structure matching approach proposed by Lee addresses this prob-
lem, we note that a form of mimicry attack is possible against such a detection
mechanism. In particular, large-scale web sites may contain hundreds of server-



side executables that may each be capable of issuing multiple database queries.
A mimicry attack is possible in a system monitored by a system such as Lee’s if
the attacker is able to construct a malicious SQL query that structurally matches
one of the queries legitimately issued by any other part of the system.

Our system addresses this potential shortcoming by maintaining associations
between individual server-side executables and the structure of the queries they
issue. We note that an additional, more restrictive mimicry attack is possible
against systems containing executables that issue multiple queries. In this case,
if an attacker is able to find another query structure within a single server-side
executable that matches the structure of her attack query, the attack will not be
detected. Tracking associations at a finer level of detail is possible (e.g., through
instrumentation of executables), and will be implemented in a future version of
our system.

4 Detecting Anomalous SQL Queries

Fig. 1. Overview of the System

We have developed an intrusion detection system that utilizes multiple anomaly
detection models to detect attacks against back-end SQL databases. In the fol-
lowing we describe the architecture of our system. Then, in section 5 we de-
scribe further the models used by our system. Figure 1 shows an overview of the
architecture of our system. The system taps into the communication channel
between web-based applications and the back-end database server. SQL queries
performed by the applications are intercepted and sent to the IDS for analysis.
The IDS parses the SQL statements and selects what features of the query should
be modeled. A type inference process is performed on the selected features in
order to support the selection of correct statistical models to be applied to the
event, before a profile is selected. A profile is a collection of models, which the
features are fed to in order to train the set of models or to generate an anomaly
score.



Our system is a learning-based anomaly detector, and thus requires that a
training phase is performed prior to detection. The training phase is divided
into two halves. During the first half of the training phase, the data fed to the
models is used for building the profiles associated with the models’ parameters.
It is assumed that the data processed in the training phase is attack-free and,
therefore, during this phase the models learn what normal queries look like. In
the second half of the training phase, the model parameters are not updated.
Instead an anomaly score is calculated based on how well the processed features
fit the trained models. For each model, the maximum anomaly score seen during
the second half of the training period is stored and used to set an anomaly
threshold.

During the following detection phase, anomaly scores are calculated for each
query. If an anomaly score exceeds the maximum anomaly score seen during
training by a certain tunable percentage, the query is considered anomalous and
an alert is generated.

4.1 Event Provider

The event provider is responsible for supplying the intrusion detection system
with a stream of SQL queries. It is important that the event provider report
every SQL statement performed by the monitored application. Since nothing
can be assumed about the quality of the application, the provider does not rely
on application-specific mechanisms to perform the reporting. The event provider
operates on the application server, because the server environment has access
to information about the process performing the query and can log security-
relevant information, such as the filename of the script currently executing. The
logging is implemented by utilizing modified versions of the system libraries that
provide connectivity between the application and the database.

4.2 Parser

The parser processes each incoming SQL query generating a high level-view of
the query. The parser outputs this representation as a sequence of tokens. Each
token has a flag which indicates whether the token is a constant or not. Constants
are the only elements of an SQL query that should contain user supplied input.

Tokens representing database field names are augmented by a datatype at-
tribute. The datatype is found by looking up the field name and its correspond-
ing table name in a mapping of the database. This mapping is automatically
generated by querying the database for all its tables and fields. The generated
mapping can be updated by the user if it is desirable to describe the datatype
of a field more accurately. For instance a field in the database might be of type
varchar, which implies arbitrary string values, but the user could change this
type to XML in order to inform the IDS that the field contains an XML repre-
sentation of an object. The set of available data types is user-extensible and the
IDS offers an easy interface to specify how new data types should be processed
by the intrusion detection system.



Type inference is also performed on the constants contained in the query
using the following rules:

– A constant that is compared to a field using an SQL operator has its data
type set to the data type of the field it is compared to.

– A constant that is inserted into a table has its datatype set to the datatype
of the field it is inserted into.

4.3 Feature Selector

The feature selector transforms the queries into a form suitable for processing
by the models. In addition it selects which profile each query applies to.

First, a feature vector is created by extracting all tokens marked as constant
and inserting them into a list in the order in which they appear in the query.
Then a skeleton query is generated by replacing all occurrences of constants in
the query with an empty place holder token. The skeleton query captures the
structure of the SQL query. Since user input should only appear in constants,
different user inputs should result in the same skeleton. An SQL injection would
change the structure of the query and produce a different skeleton query.

The next step depends on the status of the intrusion detection system, that
is, if the system is in training, threshold learning, or detection mode. In training
mode, the name of the script generating the query and the skeleton query are
used as keys to look up a profile. A profile is a collection of statistical models
and a mapping that dictates which features are associated with which models.
If a profile is found for the current script name/skeleton combination, then each
element of the feature vector is fed to its corresponding models in order to update
the models’ “sense” of normality.

If no profile is found, a new profile is created and inserted into the profile
database. A profile is created by instantiating a set of models for each element
of the feature vector. The type of models instantiated is dependent on the data
type of the element. For instance, an element of type varchar is associated with
models suitable for modeling strings, while an element of type int would be
connected to models capable of modeling numerical elements. For user-defined
types, the user can specify which models should be instantiated. The specific
models used in our system are described in more detail in Section 5.

If the system is in threshold learning mode, the corresponding profile is looked
up the same way as in the training mode, but the feature vector is not used to
update the models. Instead, the models are used to generate an anomaly score
that measures how well the feature vector fits the models. An aggregate score is
calculated as the sum of the negative logarithm of each individual model score
as in [10]. For each profile the highest aggregate anomaly score seen during the
threshold learning phase is recorded. If no profile is found for an event, a warning
is printed that indicates that the previous training phase was not complete.

In detection mode, an anomaly score is calculated in a way similar to the pre-
vious mode, but differently, if the anomaly score exceeds the max value recorded



in the threshold recognition phase by a certain percentage, an alarm is gener-
ated. Alarms are also generated if no profile is found for an event, or if an event
contains SQL statements that cause a parse error.

4.4 Implementation

Our implementation uses a modified version of the libmysqlclient library, which
logs all performed SQL queries. Libmysqlclient is part of the MySQL database
system and most applications that supports the MySQL database utilize this
library to communicate with the database server. The provider logs all queries
to a file which is read by the sensor.

The sensor is implemented in C++. The incoming queries are parsed by a
Yacc-based parser. After parsing and type inference, the events are fed to the
detection engine. The detection engine is implemented as an extension of our
anomaly-detection framework, called libAnomaly [1]. LibAnomaly provides a
number of useful abstract entities for the creation of anomaly-based intrusion
detection systems and makes frequently-used detection techniques readily avail-
able. libAnomaly has previously been used to implement anomaly detectors that
processes system call traces and web logs [10,12].

5 Anomaly Detection Models

Different statistical models are used depending on what data type is modeled. In
our implementation, two basic data types are supported. Strings and integers.
The string data type is modeled by six different models, namely five string-
based models plus a data type independent model. Integers are only modeled by
the data type independent model. These models are described in the following
section. See [10] for a more in-depth description of the different models.

5.1 String Models

String Length The goal of the string length model is to approximate the actual
but unknown distribution of the lengths of string values and to detect instances
that significantly deviate from the observed normal behavior. For example, sys-
tem call string arguments often represent canonical file names that point to an
entry in the file system. These arguments are commonly used when files are
accessed (open, stat) or executed (execve), and their lengths rarely exceed a
hundred characters. However, when a malicious input is passed to programs, it
often occurs that this input also appears in an argument of a system call with a
length of several hundred bytes. The detection of significant deviations is based
on the Chebyshev inequality [4].



String Character Distribution The string character distribution model captures
the concept of a normal string argument by looking at its character distribution.
The approach is based on the observation that strings have a regular structure,
are often human-readable, and almost always contain only printable characters.
In case of attacks that send executable data, a completely different character
distribution can be observed. This is also true for attacks that send many repe-
titions of a single character (e.g., the nop-sledge of a buffer overflow attack). The
detection of deviating arguments is performed by a statistical test (Pearson χ2-
test) that determines the probability that the character distribution of a string
parameter fits the normal distribution established during the training phase.

String Prefix and Suffix Matcher The length and character distribution are two
features that provide a ball-park measure of the regularity of a string. Sometimes,
however, it is desirable to capture the structure of a string in a more precise
fashion. The idea of the prefix and suffix matcher model is to capture substrings
that are shared by the value of specific elements in an event. In particular, these
models can be applied to elements that represent file names. For example, the
prefixes of file name arguments might indicate that all files are located in the
same directory or under a common directory root (e.g., a user’s home directory
or the document root directory of the web server). The suffixes of file names are
often indicators of the file types that are accessed. A web server, for example,
can be expected to mostly access files with a htm[l] ending when these files are
located under the document root. To build a model of normal string prefixes
and suffixes, the first and last n characters of each string are extracted during
the training phase. Whenever a certain (large) fraction of all analyzed strings
has a certain prefix or suffix in common, the corresponding string is included
into the set of known prefixes/suffixes. During the detection phase, when the set
of known prefixes/suffixes is not empty, it is checked whether the characterized
element value contains a known prefix or suffix. If this is the case, the input is
tagged as normal, otherwise, it is considered anomalous.

String Structure Inference For the purposes of this model, the structure of an
argument is the regular grammar that describes all of its normal, legitimate
values. Thus, the task of the structural inference model is to extract a gram-
mar that generates all legitimate elements. When structural inference is applied
to a string element, the resulting grammar must be able to produce at least
all elements encountered during the training phase. Unfortunately, there is no
unique grammar that can be derived from a finite set of string elements. When
no negative examples are given (i.e., elements that should not be derivable from
the grammar), it is always possible to create either a grammar that contains ex-
actly the training data or a grammar that allows production of arbitrary strings.
The first case is a form of over-simplification, as the resulting grammar is only
able to derive the learned input without providing any level of abstraction. This
means that no new information is deduced. The second case is a form of over-
generalization, because the grammar is capable of producing all possible strings,
but there is no structural information left.



One possible approach for our proposed structural inference is to start with an
automaton that exactly reflects the input data. Then, the grammar is generalized
as long as it seems “reasonable”, and the process is stopped before too much
structural information is lost. We aim to implement the generalization process
of this model based on the work presented in [18] and [19]. In these papers, the
process of “reasonable generalization” is based on Bayes’ theorem:

p(Model|TrainingData) =

p(TrainingData|Model) ∗ p(Model)

p(TrainingData)

We are interested in maximizing the a posteriori probability (left-hand side),
thus, we have to maximize the product on the right-hand side of the equation.
The first term, which is the probability of the training data given the model,
can be calculated for a certain automaton directly from the training data. The
second term, which is the prior probability of the model, is not so straightfor-
ward. It has to reflect the fact that, in general, smaller models are preferred.
This probability is calculated heuristically, taking into account the number of
states and transitions of the automaton. The denominator (i.e., probability of
the training data) is considered a constant scaling factor that can be ignored.

During the detection phase, it is checked whether an input string argument
can be generated by the automaton. If this is possible, the string is considered
normal, otherwise it is flagged as anomalous. A more complete description of the
implementation of this model can be found in [12].

5.2 Data Type-Independent Model

Token Finder The purpose of the token finder model is to determine whether
the values of a certain element are drawn from a limited set of possible alter-
natives (i.e., they are tokens of an enumeration). Web-application often receive
parameters that represent a selection among few possibilities presented to the
user in an HTML form or that represent flag-like values, e.g., a certain type of
credit card. When an attacker tries to exploit uncommon values of the parame-
ter, previously unseen values may appear. This model is particularly effective in
detecting these types of attacks. The decision between an enumeration and ran-
dom values is made utilizing a simple statistical test, such as the non-parametric
Kolmogorov-Smirnov variant as suggested in [13].

6 Discussion and Evaluation

We evaluated our system using an installation of the PHP-Nuke web portal
system [5]. PHP-Nuke has a long history of security problems [17] and contains
several SQL-based vulnerabilities.



Our test server was a 2 GHz Pentium 4 with 1 GB of RAM running Linux
2.6.1. The server was configured with an Apache web server (v2.0.52), the MySQL
database (v4.1.8), and PHP-Nuke (v7.5).

Attack-free audit data was generated by manually operating the web site
using a web browser and, at the same time, running scripts simulating user
activity. PHP-Nuke is a fairly large system, so generating audit data by scripts
alone would require a major development effort when creating the scripts. The
test scripts we used only utilized the central functionality of PHP-Nuke. We
relied on manual browsing to operate the less-used functionality. Three attack-
free datasets were produced this way. The first was used for training the models,
the second was used for the threshold learning phase, while the third was used
for false positive rate estimation.

Dataset # Queries # Alerts Correct Detect. False Positives

Training 44035 N/A N/A N/A

Threshold Learning 13831 N/A N/A N/A

Attack1 25 1 1 0(0%)

Attack2 65 1 1 0(0%)

Attack3 173 6 6 0(0%)

Attack4 79 1 1 0(0%)

Attack Free 15704 58 0 58(.37%)

Attack Free W/ Custom Datatype 15704 2 0 2(.013%)

Table 1. Summary of system training and detection experiments

In order to evaluate the detection capabilities of our system, four differ-
ent SQL-based attacks against PHP-Nuke were developed. The attacks were
run against the test server while background traffic was generated by the user-
simulation scripts. For each attack a dataset containing one attack instance was
recorded. Our trained IDS was run against each of the attack datasets and the
output was analyzed to check if the IDS was able to detect all the attacks.

6.1 Attacks

The three first attacks in our tests are performed by posting form-encoded data
to a specific URL. For each of these attacks, we show what page contains the
vulnerability and what data needs to be posted in order to exploit the system.
We also show the SQL query that is produced as a consequence of the attack.
Each of the attacks were discovered during our experimentation with PHP-Nuke
and, to the best of the authors’ knowledge, all attacks presented are novel.

Attack1: Resetting any users password

Vulnerable page phpnuke/modules.php



Post data name=’; UPDATE nuke users SET user password=’<new md5pass>’

WHERE username=’<user>’; −−
Result SELECT active, view FROM nuke modules WHERE title=’Statistics’;

UPDATE nuke users SET user password=’<new md5pass>’ WHERE username=’<user>’;

−−’

This attack updates the password of an existing user. A variable used for
passing the value name to the page modules.php is not escaped before inserting
it into a query. This allows an attacker to set any users password to a value of
her choosing by injecting an SQL UPDATE statement for the table nuke users.
The attack is detected by our system because the SQL statement violates the
structural model. See Table 1 for details.

Attack2: Enumerating all users

Vulnerable page phpnuke/modules.php
Post data 1 name=Your Account

Post data 2 op=userinfo

Post data 3 username=’ OR username LIKE ’A%’; −−
Result SELECT uname FROM nuke session WHERE uname=’’ OR username LIKE

’A%’; −− ’

This attack allows one to retrieve a list of all users of the system. The
username value is not properly checked by the script that shows account in-
formation about the current user. By injecting a specially crafted string the
attacker can select a user by an SQL wildcard expression. When executing the
attack, the resulting page shows the first user in alphabetical order that matches
the LIKE expression. To enumerate all the users, several executions of the attack
are required. The following pseudocode would generate a user list:

getusers(prefix) {
for letter in a...z:

user = get first user that starts with
prefix + letter

if user is found:
print user
getusers(prefix+letter)

}

main() {
getusers("")

}

This attack is also detected by our system because of a violation of the
structural model, as shown in Table 1.

Attack3: Parallel password guessing

Vulnerable page phpnuke/modules.php
Post data 1 name=Your Account

Post data 2 username=’ OR user password = ’<md5 password>’ ;

Post data 3 user password=<password>



Result1 SELECT user password, user id, .... FROM nuke users WHERE username=’’

OR user password = ’<md5 password>’ ;’

Result2 SELECT time FROM nuke session WHERE uname=’\’ OR user password

= \’<md5 password> \’ ;’

This attacks allows one to speed up password guessing by trying a password
against the whole user database in parallel. The attacker chooses a password to
try and inserts both the password and an md5 checksum of it into the query. If
any user on the system has that password, the login will succeed. Our system
detects six anomalous SQL queries as a result of this attack. The first query
is detected because the query structure is violated as a result of the injection.
The structure of the second query shown is valid because it is not the result
of an SQL injection. In spite of this, our system correctly marks this query as
anomalous because the structure of the username is not similar to any username
seen in the training data. The fact that different attacks are detected by different
models demonstrates that a multi-model approach is able to detect more attacks
by providing a more complete description of the web-application being modeled.
The remaining 4 anomalous queries were similar to the second query.

Attack4: Cross site scripting The fourth attack is different in that it does not
require posting of any data. Instead the attack is executed by retrieving any
PHP-Nuke page and passing the JavaScript in the HTML referrer field. All
referrer values received by PHP-Nuke is displayed unescaped on a statistics page.
The script is executed when a user clicks on one of the links on PHP-Nuke’s
referrer statistics page.

In our test we passed the value " onclick="alert(document.domain);"

as the referrer. This caused the following query to be executed: INSERT INTO

nuke referer VALUES (NULL, ’" onclick="alert(document.domain);"’) .
This attack was detected by our system because the referer value had a different
structure than the values seen during the training.

6.2 False Positive Rate

Traditionally, anomaly detection systems have been prone to generating high
rates of false positives. We evaluated the false positive rate in our system by
training the system as in the attack tests, and using an additional attack-free
dataset as a detection set. This second attack-free set was generated in a way
similar to the training sets, but the manual browsing of the web site was per-
formed by a different person than the one generating the training data. This was
done to ensure that the datasets were not artificially similar due to regularities
in the browsing habits of a single person.

The results of the test are shown in Table 1, which shows the false positive
rate to be fairly high. Inspection of the alarms generated by the IDS showed
that this was due to fact that the training data was generated in a different
month than the test data, and the IDS had only seen one value for the month
field during the training period. When confronted with a new month value the



IDS reported this as an anomaly. We also identified a year field in the database
that had a potential for generating false positives in a way similar to the month
field. We changed the configuration of our system by introducing two custom
data types: month and year. The models associated with these data types would
consider any value within the normally acceptable range (i.e., months 1-12 would
be accepted but not 13). Upon reevaluating the false positive rate, we observed
a dramatic reduction in the number of false alarms, as can be seen in Table 1.
The remaining two false positives were a result of queries not seen during the
training period.

We believe that many installations of our system would require the introduc-
tion of custom data types similar to those mentioned above in order to produce
an acceptably low false positive rate. However, the introduction of a new data
type is fairly easy and most database fields do not require any special treatment.
Because of this we believe the system would be very easy to configure for a new
application, even by persons with no special training in security.

6.3 Performance Overhead

A performance test of our system was performed to quantify the overhead intro-
duced by our system. Our metrics provide only a rough estimation of what the
overhead is. The performance overhead of a real deployment would be dependent
on numerous factors such as the rate at which different pages are accessed, the
number of queries executed for each page served, and the topology of the servers
in the installation.

Our performance metrics measure the average number of CPU seconds spent
by our tool per query processed. The number of CPU seconds spent by MySQL
and Apache/PHP is given for comparison. Our experiment was conducted by
running the IDS sensor in real time on the test server while executing the same
user simulation scripts used to generate the training data. The number of CPU
seconds spent by each component was recorded and an average per-query value
was computed. Our test generated 105,612 queries. See Table 2 for the results.
The performance of our system is quite good considering that no code optimiza-
tion effort has been performed.

Process Total CPU (s) Per Query CPU (ms)

SqlAnomaly 41.3 .39

Apache/PHP 106.2 1.00

MySQL 22.0 .20

Table 2. Performance Metrics



7 Conclusions and Future Work

This paper presents a novel anomaly-based intrusion detection approach for the
detection of attacks against back-end databases used by web-based applications.
The approach relies on a composition of multiple models to characterize the
normal behavior of web-based applications when accessing the database.

We developed a system based on this approach and evaluated its effectiveness
by measuring its ability to detect novel attacks, its false positive rate, and the
overhead introduced by the system. The results show that our system is indeed
able to detect novel attacks with few false positives and little overhead. In ad-
dition, the learning-based approach utilized by the system makes it well-suited
for deployment by administrators without extensive security expertise.

Our future research will focus on developing better models and on using
additional event streams (such as the system calls executed by server-side ex-
ecutables) to more completely characterize the behavior of web-based systems.
Furthermore, auditing of more complex database features such as stored proce-
dures could be accommodated through the inclusion of the database activity log
as a second event stream.

We plan to develop techniques to determine the coverage space of training
data with respect to an existing system. These techniques will focus on static
analysis of web-application code and on identifying high-level relationships be-
tween each component of a web-based system. This meta-information will then
be leveraged to determine if the current training data provides sufficient cover-
age of the functionality of the systems and, as a result, reduce the possibility
of generating false positives. For example, it will be possible to determine if all
the parameters of a server-side application have been exercised by the training
data or if all the pages that contain embedded code have been requested. The
resulting models would have the advantage of added coverage during the training
phase while still capturing installation-specific behaviors that are not statically
inferable.
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